Solve for x
x=\frac{\sqrt{41}-3}{4}\approx 0.850781059
x=\frac{-\sqrt{41}-3}{4}\approx -2.350781059
Graph
Share
Copied to clipboard
2\left(x-1\right)\left(x+1\right)=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{2}-\frac{x-1}{2}\right)-x^{2}
Multiply both sides of the equation by 2.
\left(2x-2\right)\left(x+1\right)=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{2}-\frac{x-1}{2}\right)-x^{2}
Use the distributive property to multiply 2 by x-1.
2x^{2}-2=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{2}-\frac{x-1}{2}\right)-x^{2}
Use the distributive property to multiply 2x-2 by x+1 and combine like terms.
2x^{2}-2=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\times \frac{2x-3-\left(x-1\right)}{2}-x^{2}
Since \frac{2x-3}{2} and \frac{x-1}{2} have the same denominator, subtract them by subtracting their numerators.
2x^{2}-2=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\times \frac{2x-3-x+1}{2}-x^{2}
Do the multiplications in 2x-3-\left(x-1\right).
2x^{2}-2=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\times \frac{x-2}{2}-x^{2}
Combine like terms in 2x-3-x+1.
2x^{2}-2=\frac{2\left(x-2\right)}{2}\left(\frac{1}{2}x+\frac{x-2}{2}\right)-x^{2}
Express 2\times \frac{x-2}{2} as a single fraction.
2x^{2}-2=\left(x-2\right)\left(\frac{1}{2}x+\frac{x-2}{2}\right)-x^{2}
Cancel out 2 and 2.
2x^{2}-2=\frac{1}{2}x^{2}+x\times \frac{x-2}{2}-x-2\times \frac{x-2}{2}-x^{2}
Use the distributive property to multiply x-2 by \frac{1}{2}x+\frac{x-2}{2}.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x\left(x-2\right)}{2}-x-2\times \frac{x-2}{2}-x^{2}
Express x\times \frac{x-2}{2} as a single fraction.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x\left(x-2\right)}{2}-x+\frac{-2\left(x-2\right)}{2}-x^{2}
Express -2\times \frac{x-2}{2} as a single fraction.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x\left(x-2\right)}{2}-x-\left(x-2\right)-x^{2}
Cancel out 2 and 2.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x\left(x-2\right)}{2}-x-x+2-x^{2}
To find the opposite of x-2, find the opposite of each term.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x\left(x-2\right)}{2}-2x+2-x^{2}
Combine -x and -x to get -2x.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x^{2}-2x}{2}-2x+2-x^{2}
Use the distributive property to multiply x by x-2.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{1}{2}x^{2}-x-2x+2-x^{2}
Divide each term of x^{2}-2x by 2 to get \frac{1}{2}x^{2}-x.
2x^{2}-2=x^{2}-x-2x+2-x^{2}
Combine \frac{1}{2}x^{2} and \frac{1}{2}x^{2} to get x^{2}.
2x^{2}-2=x^{2}-3x+2-x^{2}
Combine -x and -2x to get -3x.
2x^{2}-2-x^{2}=-3x+2-x^{2}
Subtract x^{2} from both sides.
x^{2}-2=-3x+2-x^{2}
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-2+3x=2-x^{2}
Add 3x to both sides.
x^{2}-2+3x-2=-x^{2}
Subtract 2 from both sides.
x^{2}-4+3x=-x^{2}
Subtract 2 from -2 to get -4.
x^{2}-4+3x+x^{2}=0
Add x^{2} to both sides.
2x^{2}-4+3x=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+3x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-4\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 3 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 2\left(-4\right)}}{2\times 2}
Square 3.
x=\frac{-3±\sqrt{9-8\left(-4\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-3±\sqrt{9+32}}{2\times 2}
Multiply -8 times -4.
x=\frac{-3±\sqrt{41}}{2\times 2}
Add 9 to 32.
x=\frac{-3±\sqrt{41}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{41}-3}{4}
Now solve the equation x=\frac{-3±\sqrt{41}}{4} when ± is plus. Add -3 to \sqrt{41}.
x=\frac{-\sqrt{41}-3}{4}
Now solve the equation x=\frac{-3±\sqrt{41}}{4} when ± is minus. Subtract \sqrt{41} from -3.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
The equation is now solved.
2\left(x-1\right)\left(x+1\right)=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{2}-\frac{x-1}{2}\right)-x^{2}
Multiply both sides of the equation by 2.
\left(2x-2\right)\left(x+1\right)=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{2}-\frac{x-1}{2}\right)-x^{2}
Use the distributive property to multiply 2 by x-1.
2x^{2}-2=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\left(\frac{2x-3}{2}-\frac{x-1}{2}\right)-x^{2}
Use the distributive property to multiply 2x-2 by x+1 and combine like terms.
2x^{2}-2=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\times \frac{2x-3-\left(x-1\right)}{2}-x^{2}
Since \frac{2x-3}{2} and \frac{x-1}{2} have the same denominator, subtract them by subtracting their numerators.
2x^{2}-2=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\times \frac{2x-3-x+1}{2}-x^{2}
Do the multiplications in 2x-3-\left(x-1\right).
2x^{2}-2=2\left(\frac{1}{2}x+\frac{x-2}{2}\right)\times \frac{x-2}{2}-x^{2}
Combine like terms in 2x-3-x+1.
2x^{2}-2=\frac{2\left(x-2\right)}{2}\left(\frac{1}{2}x+\frac{x-2}{2}\right)-x^{2}
Express 2\times \frac{x-2}{2} as a single fraction.
2x^{2}-2=\left(x-2\right)\left(\frac{1}{2}x+\frac{x-2}{2}\right)-x^{2}
Cancel out 2 and 2.
2x^{2}-2=\frac{1}{2}x^{2}+x\times \frac{x-2}{2}-x-2\times \frac{x-2}{2}-x^{2}
Use the distributive property to multiply x-2 by \frac{1}{2}x+\frac{x-2}{2}.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x\left(x-2\right)}{2}-x-2\times \frac{x-2}{2}-x^{2}
Express x\times \frac{x-2}{2} as a single fraction.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x\left(x-2\right)}{2}-x+\frac{-2\left(x-2\right)}{2}-x^{2}
Express -2\times \frac{x-2}{2} as a single fraction.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x\left(x-2\right)}{2}-x-\left(x-2\right)-x^{2}
Cancel out 2 and 2.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x\left(x-2\right)}{2}-x-x+2-x^{2}
To find the opposite of x-2, find the opposite of each term.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x\left(x-2\right)}{2}-2x+2-x^{2}
Combine -x and -x to get -2x.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{x^{2}-2x}{2}-2x+2-x^{2}
Use the distributive property to multiply x by x-2.
2x^{2}-2=\frac{1}{2}x^{2}+\frac{1}{2}x^{2}-x-2x+2-x^{2}
Divide each term of x^{2}-2x by 2 to get \frac{1}{2}x^{2}-x.
2x^{2}-2=x^{2}-x-2x+2-x^{2}
Combine \frac{1}{2}x^{2} and \frac{1}{2}x^{2} to get x^{2}.
2x^{2}-2=x^{2}-3x+2-x^{2}
Combine -x and -2x to get -3x.
2x^{2}-2-x^{2}=-3x+2-x^{2}
Subtract x^{2} from both sides.
x^{2}-2=-3x+2-x^{2}
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-2+3x=2-x^{2}
Add 3x to both sides.
x^{2}-2+3x+x^{2}=2
Add x^{2} to both sides.
2x^{2}-2+3x=2
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+3x=2+2
Add 2 to both sides.
2x^{2}+3x=4
Add 2 and 2 to get 4.
\frac{2x^{2}+3x}{2}=\frac{4}{2}
Divide both sides by 2.
x^{2}+\frac{3}{2}x=\frac{4}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{3}{2}x=2
Divide 4 by 2.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=2+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=2+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{41}{16}
Add 2 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{41}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{41}}{4} x+\frac{3}{4}=-\frac{\sqrt{41}}{4}
Simplify.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}