Solve for P
\left\{\begin{matrix}P=\frac{\left(x^{2}+1\right)x^{5}}{x^{2}-x-k}\text{, }&k\neq x\left(x-1\right)\\P\in \mathrm{R}\text{, }&x=0\text{ and }k=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{x\left(x^{6}+x^{4}-Px+P\right)}{P}\text{, }&P\neq 0\\k\in \mathrm{R}\text{, }&x=0\text{ and }P=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(xP-P\right)x=x^{7}+x^{5}+kP\times 1
Use the distributive property to multiply x-1 by P.
Px^{2}-Px=x^{7}+x^{5}+kP\times 1
Use the distributive property to multiply xP-P by x.
Px^{2}-Px-kP\times 1=x^{7}+x^{5}
Subtract kP\times 1 from both sides.
Px^{2}-Px-Pk=x^{7}+x^{5}
Reorder the terms.
\left(x^{2}-x-k\right)P=x^{7}+x^{5}
Combine all terms containing P.
\frac{\left(x^{2}-x-k\right)P}{x^{2}-x-k}=\frac{x^{7}+x^{5}}{x^{2}-x-k}
Divide both sides by x^{2}-x-k.
P=\frac{x^{7}+x^{5}}{x^{2}-x-k}
Dividing by x^{2}-x-k undoes the multiplication by x^{2}-x-k.
P=\frac{\left(x^{2}+1\right)x^{5}}{x^{2}-x-k}
Divide x^{7}+x^{5} by x^{2}-x-k.
\left(xP-P\right)x=x^{7}+x^{5}+kP\times 1
Use the distributive property to multiply x-1 by P.
Px^{2}-Px=x^{7}+x^{5}+kP\times 1
Use the distributive property to multiply xP-P by x.
x^{7}+x^{5}+kP\times 1=Px^{2}-Px
Swap sides so that all variable terms are on the left hand side.
x^{5}+kP\times 1=Px^{2}-Px-x^{7}
Subtract x^{7} from both sides.
kP\times 1=Px^{2}-Px-x^{7}-x^{5}
Subtract x^{5} from both sides.
Pk=-x^{7}-x^{5}+Px^{2}-Px
Reorder the terms.
\frac{Pk}{P}=\frac{x\left(-x^{6}-x^{4}+Px-P\right)}{P}
Divide both sides by P.
k=\frac{x\left(-x^{6}-x^{4}+Px-P\right)}{P}
Dividing by P undoes the multiplication by P.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}