Skip to main content
Solve for P
Tick mark Image
Solve for k
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(xP-P\right)x=x^{7}+x^{5}+kP\times 1
Use the distributive property to multiply x-1 by P.
Px^{2}-Px=x^{7}+x^{5}+kP\times 1
Use the distributive property to multiply xP-P by x.
Px^{2}-Px-kP\times 1=x^{7}+x^{5}
Subtract kP\times 1 from both sides.
Px^{2}-Px-Pk=x^{7}+x^{5}
Reorder the terms.
\left(x^{2}-x-k\right)P=x^{7}+x^{5}
Combine all terms containing P.
\frac{\left(x^{2}-x-k\right)P}{x^{2}-x-k}=\frac{x^{7}+x^{5}}{x^{2}-x-k}
Divide both sides by x^{2}-x-k.
P=\frac{x^{7}+x^{5}}{x^{2}-x-k}
Dividing by x^{2}-x-k undoes the multiplication by x^{2}-x-k.
P=\frac{\left(x^{2}+1\right)x^{5}}{x^{2}-x-k}
Divide x^{7}+x^{5} by x^{2}-x-k.
\left(xP-P\right)x=x^{7}+x^{5}+kP\times 1
Use the distributive property to multiply x-1 by P.
Px^{2}-Px=x^{7}+x^{5}+kP\times 1
Use the distributive property to multiply xP-P by x.
x^{7}+x^{5}+kP\times 1=Px^{2}-Px
Swap sides so that all variable terms are on the left hand side.
x^{5}+kP\times 1=Px^{2}-Px-x^{7}
Subtract x^{7} from both sides.
kP\times 1=Px^{2}-Px-x^{7}-x^{5}
Subtract x^{5} from both sides.
Pk=-x^{7}-x^{5}+Px^{2}-Px
Reorder the terms.
\frac{Pk}{P}=\frac{x\left(-x^{6}-x^{4}+Px-P\right)}{P}
Divide both sides by P.
k=\frac{x\left(-x^{6}-x^{4}+Px-P\right)}{P}
Dividing by P undoes the multiplication by P.