Solve for x
x>-\frac{1}{6}
Graph
Share
Copied to clipboard
x^{2}-2x+1-\left(x+1\right)^{2}<\frac{2}{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1-\left(x^{2}+2x+1\right)<\frac{2}{3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}-2x+1-x^{2}-2x-1<\frac{2}{3}
To find the opposite of x^{2}+2x+1, find the opposite of each term.
-2x+1-2x-1<\frac{2}{3}
Combine x^{2} and -x^{2} to get 0.
-4x+1-1<\frac{2}{3}
Combine -2x and -2x to get -4x.
-4x<\frac{2}{3}
Subtract 1 from 1 to get 0.
x>\frac{\frac{2}{3}}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x>\frac{2}{3\left(-4\right)}
Express \frac{\frac{2}{3}}{-4} as a single fraction.
x>\frac{2}{-12}
Multiply 3 and -4 to get -12.
x>-\frac{1}{6}
Reduce the fraction \frac{2}{-12} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}