Solve for x
x=-12
x=17
Graph
Quiz
Polynomial
5 problems similar to:
( x - 1 ) ^ { 2 } + 11 x + 199 = 3 x ^ { 2 } - ( x - 2 ) ^ { 2 }
Share
Copied to clipboard
x^{2}-2x+1+11x+199=3x^{2}-\left(x-2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}+9x+1+199=3x^{2}-\left(x-2\right)^{2}
Combine -2x and 11x to get 9x.
x^{2}+9x+200=3x^{2}-\left(x-2\right)^{2}
Add 1 and 199 to get 200.
x^{2}+9x+200=3x^{2}-\left(x^{2}-4x+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}+9x+200=3x^{2}-x^{2}+4x-4
To find the opposite of x^{2}-4x+4, find the opposite of each term.
x^{2}+9x+200=2x^{2}+4x-4
Combine 3x^{2} and -x^{2} to get 2x^{2}.
x^{2}+9x+200-2x^{2}=4x-4
Subtract 2x^{2} from both sides.
-x^{2}+9x+200=4x-4
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+9x+200-4x=-4
Subtract 4x from both sides.
-x^{2}+5x+200=-4
Combine 9x and -4x to get 5x.
-x^{2}+5x+200+4=0
Add 4 to both sides.
-x^{2}+5x+204=0
Add 200 and 4 to get 204.
a+b=5 ab=-204=-204
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+204. To find a and b, set up a system to be solved.
-1,204 -2,102 -3,68 -4,51 -6,34 -12,17
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -204.
-1+204=203 -2+102=100 -3+68=65 -4+51=47 -6+34=28 -12+17=5
Calculate the sum for each pair.
a=17 b=-12
The solution is the pair that gives sum 5.
\left(-x^{2}+17x\right)+\left(-12x+204\right)
Rewrite -x^{2}+5x+204 as \left(-x^{2}+17x\right)+\left(-12x+204\right).
-x\left(x-17\right)-12\left(x-17\right)
Factor out -x in the first and -12 in the second group.
\left(x-17\right)\left(-x-12\right)
Factor out common term x-17 by using distributive property.
x=17 x=-12
To find equation solutions, solve x-17=0 and -x-12=0.
x^{2}-2x+1+11x+199=3x^{2}-\left(x-2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}+9x+1+199=3x^{2}-\left(x-2\right)^{2}
Combine -2x and 11x to get 9x.
x^{2}+9x+200=3x^{2}-\left(x-2\right)^{2}
Add 1 and 199 to get 200.
x^{2}+9x+200=3x^{2}-\left(x^{2}-4x+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}+9x+200=3x^{2}-x^{2}+4x-4
To find the opposite of x^{2}-4x+4, find the opposite of each term.
x^{2}+9x+200=2x^{2}+4x-4
Combine 3x^{2} and -x^{2} to get 2x^{2}.
x^{2}+9x+200-2x^{2}=4x-4
Subtract 2x^{2} from both sides.
-x^{2}+9x+200=4x-4
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+9x+200-4x=-4
Subtract 4x from both sides.
-x^{2}+5x+200=-4
Combine 9x and -4x to get 5x.
-x^{2}+5x+200+4=0
Add 4 to both sides.
-x^{2}+5x+204=0
Add 200 and 4 to get 204.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 204}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and 204 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 204}}{2\left(-1\right)}
Square 5.
x=\frac{-5±\sqrt{25+4\times 204}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-5±\sqrt{25+816}}{2\left(-1\right)}
Multiply 4 times 204.
x=\frac{-5±\sqrt{841}}{2\left(-1\right)}
Add 25 to 816.
x=\frac{-5±29}{2\left(-1\right)}
Take the square root of 841.
x=\frac{-5±29}{-2}
Multiply 2 times -1.
x=\frac{24}{-2}
Now solve the equation x=\frac{-5±29}{-2} when ± is plus. Add -5 to 29.
x=-12
Divide 24 by -2.
x=-\frac{34}{-2}
Now solve the equation x=\frac{-5±29}{-2} when ± is minus. Subtract 29 from -5.
x=17
Divide -34 by -2.
x=-12 x=17
The equation is now solved.
x^{2}-2x+1+11x+199=3x^{2}-\left(x-2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}+9x+1+199=3x^{2}-\left(x-2\right)^{2}
Combine -2x and 11x to get 9x.
x^{2}+9x+200=3x^{2}-\left(x-2\right)^{2}
Add 1 and 199 to get 200.
x^{2}+9x+200=3x^{2}-\left(x^{2}-4x+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}+9x+200=3x^{2}-x^{2}+4x-4
To find the opposite of x^{2}-4x+4, find the opposite of each term.
x^{2}+9x+200=2x^{2}+4x-4
Combine 3x^{2} and -x^{2} to get 2x^{2}.
x^{2}+9x+200-2x^{2}=4x-4
Subtract 2x^{2} from both sides.
-x^{2}+9x+200=4x-4
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+9x+200-4x=-4
Subtract 4x from both sides.
-x^{2}+5x+200=-4
Combine 9x and -4x to get 5x.
-x^{2}+5x=-4-200
Subtract 200 from both sides.
-x^{2}+5x=-204
Subtract 200 from -4 to get -204.
\frac{-x^{2}+5x}{-1}=-\frac{204}{-1}
Divide both sides by -1.
x^{2}+\frac{5}{-1}x=-\frac{204}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-5x=-\frac{204}{-1}
Divide 5 by -1.
x^{2}-5x=204
Divide -204 by -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=204+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=204+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{841}{4}
Add 204 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{841}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{841}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{29}{2} x-\frac{5}{2}=-\frac{29}{2}
Simplify.
x=17 x=-12
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}