Solve for x
x=3y-z+\frac{7}{2}
Solve for y
y=\frac{x}{3}+\frac{z}{3}-\frac{7}{6}
Share
Copied to clipboard
x^{2}-2x+1+\left(y-2\right)^{2}+\left(z-3\right)^{2}=\left(x-2\right)^{2}+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1+y^{2}-4y+4+\left(z-3\right)^{2}=\left(x-2\right)^{2}+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
x^{2}-2x+5+y^{2}-4y+\left(z-3\right)^{2}=\left(x-2\right)^{2}+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Add 1 and 4 to get 5.
x^{2}-2x+5+y^{2}-4y+z^{2}-6z+9=\left(x-2\right)^{2}+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(z-3\right)^{2}.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=\left(x-2\right)^{2}+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Add 5 and 9 to get 14.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=x^{2}-4x+4+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=x^{2}-4x+4+y^{2}+2y+1+\left(z-4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=x^{2}-4x+5+y^{2}+2y+\left(z-4\right)^{2}
Add 4 and 1 to get 5.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=x^{2}-4x+5+y^{2}+2y+z^{2}-8z+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(z-4\right)^{2}.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=x^{2}-4x+21+y^{2}+2y+z^{2}-8z
Add 5 and 16 to get 21.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z-x^{2}=-4x+21+y^{2}+2y+z^{2}-8z
Subtract x^{2} from both sides.
-2x+14+y^{2}-4y+z^{2}-6z=-4x+21+y^{2}+2y+z^{2}-8z
Combine x^{2} and -x^{2} to get 0.
-2x+14+y^{2}-4y+z^{2}-6z+4x=21+y^{2}+2y+z^{2}-8z
Add 4x to both sides.
2x+14+y^{2}-4y+z^{2}-6z=21+y^{2}+2y+z^{2}-8z
Combine -2x and 4x to get 2x.
2x+y^{2}-4y+z^{2}-6z=21+y^{2}+2y+z^{2}-8z-14
Subtract 14 from both sides.
2x+y^{2}-4y+z^{2}-6z=7+y^{2}+2y+z^{2}-8z
Subtract 14 from 21 to get 7.
2x-4y+z^{2}-6z=7+y^{2}+2y+z^{2}-8z-y^{2}
Subtract y^{2} from both sides.
2x-4y+z^{2}-6z=7+2y+z^{2}-8z
Combine y^{2} and -y^{2} to get 0.
2x+z^{2}-6z=7+2y+z^{2}-8z+4y
Add 4y to both sides.
2x+z^{2}-6z=7+6y+z^{2}-8z
Combine 2y and 4y to get 6y.
2x-6z=7+6y+z^{2}-8z-z^{2}
Subtract z^{2} from both sides.
2x-6z=7+6y-8z
Combine z^{2} and -z^{2} to get 0.
2x=7+6y-8z+6z
Add 6z to both sides.
2x=7+6y-2z
Combine -8z and 6z to get -2z.
2x=6y-2z+7
The equation is in standard form.
\frac{2x}{2}=\frac{6y-2z+7}{2}
Divide both sides by 2.
x=\frac{6y-2z+7}{2}
Dividing by 2 undoes the multiplication by 2.
x=3y-z+\frac{7}{2}
Divide 7+6y-2z by 2.
x^{2}-2x+1+\left(y-2\right)^{2}+\left(z-3\right)^{2}=\left(x-2\right)^{2}+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1+y^{2}-4y+4+\left(z-3\right)^{2}=\left(x-2\right)^{2}+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
x^{2}-2x+5+y^{2}-4y+\left(z-3\right)^{2}=\left(x-2\right)^{2}+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Add 1 and 4 to get 5.
x^{2}-2x+5+y^{2}-4y+z^{2}-6z+9=\left(x-2\right)^{2}+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(z-3\right)^{2}.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=\left(x-2\right)^{2}+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Add 5 and 9 to get 14.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=x^{2}-4x+4+\left(y+1\right)^{2}+\left(z-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=x^{2}-4x+4+y^{2}+2y+1+\left(z-4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+1\right)^{2}.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=x^{2}-4x+5+y^{2}+2y+\left(z-4\right)^{2}
Add 4 and 1 to get 5.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=x^{2}-4x+5+y^{2}+2y+z^{2}-8z+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(z-4\right)^{2}.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z=x^{2}-4x+21+y^{2}+2y+z^{2}-8z
Add 5 and 16 to get 21.
x^{2}-2x+14+y^{2}-4y+z^{2}-6z-y^{2}=x^{2}-4x+21+2y+z^{2}-8z
Subtract y^{2} from both sides.
x^{2}-2x+14-4y+z^{2}-6z=x^{2}-4x+21+2y+z^{2}-8z
Combine y^{2} and -y^{2} to get 0.
x^{2}-2x+14-4y+z^{2}-6z-2y=x^{2}-4x+21+z^{2}-8z
Subtract 2y from both sides.
x^{2}-2x+14-6y+z^{2}-6z=x^{2}-4x+21+z^{2}-8z
Combine -4y and -2y to get -6y.
-2x+14-6y+z^{2}-6z=x^{2}-4x+21+z^{2}-8z-x^{2}
Subtract x^{2} from both sides.
-2x+14-6y+z^{2}-6z=-4x+21+z^{2}-8z
Combine x^{2} and -x^{2} to get 0.
14-6y+z^{2}-6z=-4x+21+z^{2}-8z+2x
Add 2x to both sides.
14-6y+z^{2}-6z=-2x+21+z^{2}-8z
Combine -4x and 2x to get -2x.
-6y+z^{2}-6z=-2x+21+z^{2}-8z-14
Subtract 14 from both sides.
-6y+z^{2}-6z=-2x+7+z^{2}-8z
Subtract 14 from 21 to get 7.
-6y-6z=-2x+7+z^{2}-8z-z^{2}
Subtract z^{2} from both sides.
-6y-6z=-2x+7-8z
Combine z^{2} and -z^{2} to get 0.
-6y=-2x+7-8z+6z
Add 6z to both sides.
-6y=-2x+7-2z
Combine -8z and 6z to get -2z.
-6y=7-2z-2x
The equation is in standard form.
\frac{-6y}{-6}=\frac{7-2z-2x}{-6}
Divide both sides by -6.
y=\frac{7-2z-2x}{-6}
Dividing by -6 undoes the multiplication by -6.
y=\frac{x}{3}+\frac{z}{3}-\frac{7}{6}
Divide -2x+7-2z by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}