Solve for x
x=-\frac{y}{22}+19
Solve for y
y=418-22x
Graph
Share
Copied to clipboard
22\left(x-1\right)=-\left(y-396\right)
Multiply both sides of the equation by 396, the least common multiple of 18,-396.
22x-22=-\left(y-396\right)
Use the distributive property to multiply 22 by x-1.
22x-22=-y+396
To find the opposite of y-396, find the opposite of each term.
22x=-y+396+22
Add 22 to both sides.
22x=-y+418
Add 396 and 22 to get 418.
22x=418-y
The equation is in standard form.
\frac{22x}{22}=\frac{418-y}{22}
Divide both sides by 22.
x=\frac{418-y}{22}
Dividing by 22 undoes the multiplication by 22.
x=-\frac{y}{22}+19
Divide -y+418 by 22.
22\left(x-1\right)=-\left(y-396\right)
Multiply both sides of the equation by 396, the least common multiple of 18,-396.
22x-22=-\left(y-396\right)
Use the distributive property to multiply 22 by x-1.
22x-22=-y+396
To find the opposite of y-396, find the opposite of each term.
-y+396=22x-22
Swap sides so that all variable terms are on the left hand side.
-y=22x-22-396
Subtract 396 from both sides.
-y=22x-418
Subtract 396 from -22 to get -418.
\frac{-y}{-1}=\frac{22x-418}{-1}
Divide both sides by -1.
y=\frac{22x-418}{-1}
Dividing by -1 undoes the multiplication by -1.
y=418-22x
Divide -418+22x by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}