( x - \sqrt { x y } ) d y = y d x 1
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x_{1}=-\sqrt{xy}+x\text{ or }y=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=0\text{, }&\left(y\geq 0\text{ and }x\geq 0\right)\text{ or }\left(x\leq 0\text{ and }y\leq 0\right)\\d\in \mathrm{R}\text{, }&\left(x=\frac{\sqrt{y\left(4x_{1}+y\right)}}{2}+\frac{y}{2}+x_{1}\text{ and }y\geq 0\text{ and }y\geq -4x_{1}\text{ and }y>-2x_{1}\right)\text{ or }\left(y=-4x_{1}\text{ and }x=-x_{1}\text{ and }x_{1}<0\right)\text{ or }\left(x=-\frac{\sqrt{y\left(4x_{1}+y\right)}}{2}+\frac{y}{2}+x_{1}\text{ and }y\geq -4x_{1}\text{ and }x_{1}\leq 0\text{ and }y>-2x_{1}\text{ and }y>0\right)\text{ or }\left(x=\frac{\sqrt{y\left(4x_{1}+y\right)}}{2}+\frac{y}{2}+x_{1}\text{ and }y\leq 0\text{ and }x_{1}\leq 0\text{ and }y<-2x_{1}\text{ and }y<-4x_{1}\right)\text{ or }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{y\left(4x_{1}+y\right)}+y+2x_{1}}{2}\text{, }&arg(\frac{\sqrt{y\left(4x_{1}+y\right)}+y}{2})<\pi \\x=\frac{-\sqrt{y\left(4x_{1}+y\right)}+y+2x_{1}}{2}\text{, }&arg(\frac{-\sqrt{y\left(4x_{1}+y\right)}+y}{2})<\pi \\x=x_{1}\text{, }&y=0\text{ or }x_{1}=0\\x\in \mathrm{C}\text{, }&y=0\text{ or }d=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{y\left(4x_{1}+y\right)}+y+2x_{1}}{2}\text{, }&\left(y\geq 0\text{ and }x_{1}>0\right)\text{ or }\left(y>-2x_{1}\text{ and }y\geq -4x_{1}\text{ and }x_{1}\leq 0\right)\text{ or }\left(x_{1}=0\text{ and }y=0\right)\text{ or }\left(x_{1}\leq 0\text{ and }y\leq 0\text{ and }y<-4x_{1}\right)\\x=\frac{-\sqrt{y\left(4x_{1}+y\right)}+y+2x_{1}}{2}\text{, }&y=0\text{ or }\left(y>0\text{ and }y\geq -4x_{1}\text{ and }x_{1}\leq 0\right)\\x\geq 0\text{, }&y\geq 0\text{ and }d=0\\x\leq 0\text{, }&y\leq 0\text{ and }d=0\\x\in \mathrm{R}\text{, }&y=0\\x=0\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(xd-\sqrt{xy}d\right)y=ydx_{1}
Use the distributive property to multiply x-\sqrt{xy} by d.
xdy-\sqrt{xy}dy=ydx_{1}
Use the distributive property to multiply xd-\sqrt{xy}d by y.
xdy-\sqrt{xy}dy-ydx_{1}=0
Subtract ydx_{1} from both sides.
dxy-dy\sqrt{xy}-dx_{1}y=0
Reorder the terms.
\left(xy-y\sqrt{xy}-x_{1}y\right)d=0
Combine all terms containing d.
\left(-y\sqrt{xy}+xy-x_{1}y\right)d=0
The equation is in standard form.
d=0
Divide 0 by xy-y\sqrt{xy}-x_{1}y.
\left(xd-\sqrt{xy}d\right)y=ydx_{1}
Use the distributive property to multiply x-\sqrt{xy} by d.
xdy-\sqrt{xy}dy=ydx_{1}
Use the distributive property to multiply xd-\sqrt{xy}d by y.
xdy-\sqrt{xy}dy-ydx_{1}=0
Subtract ydx_{1} from both sides.
dxy-dy\sqrt{xy}-dx_{1}y=0
Reorder the terms.
\left(xy-y\sqrt{xy}-x_{1}y\right)d=0
Combine all terms containing d.
\left(-y\sqrt{xy}+xy-x_{1}y\right)d=0
The equation is in standard form.
d=0
Divide 0 by xy-y\sqrt{xy}-x_{1}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}