Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2x\left(-\frac{a}{2}\right)+\left(-\frac{a}{2}\right)^{2}+y^{2}=\left(\frac{a}{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x-\frac{a}{2}\right)^{2}.
x^{2}+\frac{-2a}{2}x+\left(-\frac{a}{2}\right)^{2}+y^{2}=\left(\frac{a}{2}\right)^{2}
Express 2\left(-\frac{a}{2}\right) as a single fraction.
x^{2}-ax+\left(-\frac{a}{2}\right)^{2}+y^{2}=\left(\frac{a}{2}\right)^{2}
Cancel out 2 and 2.
x^{2}-ax+\left(\frac{a}{2}\right)^{2}+y^{2}=\left(\frac{a}{2}\right)^{2}
Calculate -\frac{a}{2} to the power of 2 and get \left(\frac{a}{2}\right)^{2}.
x^{2}-ax+\frac{a^{2}}{2^{2}}+y^{2}=\left(\frac{a}{2}\right)^{2}
To raise \frac{a}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-ax+y^{2}\right)\times 2^{2}}{2^{2}}+\frac{a^{2}}{2^{2}}=\left(\frac{a}{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-ax+y^{2} times \frac{2^{2}}{2^{2}}.
\frac{\left(x^{2}-ax+y^{2}\right)\times 2^{2}+a^{2}}{2^{2}}=\left(\frac{a}{2}\right)^{2}
Since \frac{\left(x^{2}-ax+y^{2}\right)\times 2^{2}}{2^{2}} and \frac{a^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-4xa+4y^{2}+a^{2}}{2^{2}}=\left(\frac{a}{2}\right)^{2}
Do the multiplications in \left(x^{2}-ax+y^{2}\right)\times 2^{2}+a^{2}.
\frac{4x^{2}-4xa+4y^{2}+a^{2}}{2^{2}}=\frac{a^{2}}{2^{2}}
To raise \frac{a}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{4x^{2}-4xa+4y^{2}+a^{2}}{4}=\frac{a^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{4x^{2}-4xa+4y^{2}+a^{2}}{4}=\frac{a^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{4x^{2}-4xa+4y^{2}+a^{2}}{4}-\frac{a^{2}}{4}=0
Subtract \frac{a^{2}}{4} from both sides.
\frac{4x^{2}-4xa+4y^{2}+a^{2}-a^{2}}{4}=0
Since \frac{4x^{2}-4xa+4y^{2}+a^{2}}{4} and \frac{a^{2}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-4xa+4x^{2}+4y^{2}}{4}=0
Combine like terms in 4x^{2}-4xa+4y^{2}+a^{2}-a^{2}.
-xa+x^{2}+y^{2}=0
Divide each term of -4xa+4x^{2}+4y^{2} by 4 to get -xa+x^{2}+y^{2}.
-xa+y^{2}=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-xa=-x^{2}-y^{2}
Subtract y^{2} from both sides.
\left(-x\right)a=-x^{2}-y^{2}
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{-x^{2}-y^{2}}{-x}
Divide both sides by -x.
a=\frac{-x^{2}-y^{2}}{-x}
Dividing by -x undoes the multiplication by -x.
a=\frac{y^{2}}{x}+x
Divide -y^{2}-x^{2} by -x.
x^{2}+2x\left(-\frac{a}{2}\right)+\left(-\frac{a}{2}\right)^{2}+y^{2}=\left(\frac{a}{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x-\frac{a}{2}\right)^{2}.
x^{2}+\frac{-2a}{2}x+\left(-\frac{a}{2}\right)^{2}+y^{2}=\left(\frac{a}{2}\right)^{2}
Express 2\left(-\frac{a}{2}\right) as a single fraction.
x^{2}-ax+\left(-\frac{a}{2}\right)^{2}+y^{2}=\left(\frac{a}{2}\right)^{2}
Cancel out 2 and 2.
x^{2}-ax+\left(\frac{a}{2}\right)^{2}+y^{2}=\left(\frac{a}{2}\right)^{2}
Calculate -\frac{a}{2} to the power of 2 and get \left(\frac{a}{2}\right)^{2}.
x^{2}-ax+\frac{a^{2}}{2^{2}}+y^{2}=\left(\frac{a}{2}\right)^{2}
To raise \frac{a}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}-ax+y^{2}\right)\times 2^{2}}{2^{2}}+\frac{a^{2}}{2^{2}}=\left(\frac{a}{2}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-ax+y^{2} times \frac{2^{2}}{2^{2}}.
\frac{\left(x^{2}-ax+y^{2}\right)\times 2^{2}+a^{2}}{2^{2}}=\left(\frac{a}{2}\right)^{2}
Since \frac{\left(x^{2}-ax+y^{2}\right)\times 2^{2}}{2^{2}} and \frac{a^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-4xa+4y^{2}+a^{2}}{2^{2}}=\left(\frac{a}{2}\right)^{2}
Do the multiplications in \left(x^{2}-ax+y^{2}\right)\times 2^{2}+a^{2}.
\frac{4x^{2}-4xa+4y^{2}+a^{2}}{2^{2}}=\frac{a^{2}}{2^{2}}
To raise \frac{a}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{4x^{2}-4xa+4y^{2}+a^{2}}{4}=\frac{a^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{4x^{2}-4xa+4y^{2}+a^{2}}{4}=\frac{a^{2}}{4}
Calculate 2 to the power of 2 and get 4.
\frac{4x^{2}-4xa+4y^{2}+a^{2}}{4}-\frac{a^{2}}{4}=0
Subtract \frac{a^{2}}{4} from both sides.
\frac{4x^{2}-4xa+4y^{2}+a^{2}-a^{2}}{4}=0
Since \frac{4x^{2}-4xa+4y^{2}+a^{2}}{4} and \frac{a^{2}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-4xa+4x^{2}+4y^{2}}{4}=0
Combine like terms in 4x^{2}-4xa+4y^{2}+a^{2}-a^{2}.
-xa+x^{2}+y^{2}=0
Divide each term of -4xa+4x^{2}+4y^{2} by 4 to get -xa+x^{2}+y^{2}.
-xa+y^{2}=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-xa=-x^{2}-y^{2}
Subtract y^{2} from both sides.
\left(-x\right)a=-x^{2}-y^{2}
The equation is in standard form.
\frac{\left(-x\right)a}{-x}=\frac{-x^{2}-y^{2}}{-x}
Divide both sides by -x.
a=\frac{-x^{2}-y^{2}}{-x}
Dividing by -x undoes the multiplication by -x.
a=\frac{y^{2}}{x}+x
Divide -x^{2}-y^{2} by -x.