Solve for x
x=\frac{1}{15}\approx 0.066666667
Graph
Share
Copied to clipboard
3\left(x-\frac{2}{3}\right)\left(x+\frac{2}{3}\right)=3x^{2}-\left(5x+1\right)
Multiply both sides of the equation by 3.
\left(3x-2\right)\left(x+\frac{2}{3}\right)=3x^{2}-\left(5x+1\right)
Use the distributive property to multiply 3 by x-\frac{2}{3}.
3x^{2}-\frac{4}{3}=3x^{2}-\left(5x+1\right)
Use the distributive property to multiply 3x-2 by x+\frac{2}{3} and combine like terms.
3x^{2}-\frac{4}{3}=3x^{2}-5x-1
To find the opposite of 5x+1, find the opposite of each term.
3x^{2}-\frac{4}{3}-3x^{2}=-5x-1
Subtract 3x^{2} from both sides.
-\frac{4}{3}=-5x-1
Combine 3x^{2} and -3x^{2} to get 0.
-5x-1=-\frac{4}{3}
Swap sides so that all variable terms are on the left hand side.
-5x=-\frac{4}{3}+1
Add 1 to both sides.
-5x=-\frac{1}{3}
Add -\frac{4}{3} and 1 to get -\frac{1}{3}.
x=\frac{-\frac{1}{3}}{-5}
Divide both sides by -5.
x=\frac{-1}{3\left(-5\right)}
Express \frac{-\frac{1}{3}}{-5} as a single fraction.
x=\frac{-1}{-15}
Multiply 3 and -5 to get -15.
x=\frac{1}{15}
Fraction \frac{-1}{-15} can be simplified to \frac{1}{15} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}