Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{5}y\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}\right)+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\frac{64}{225}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
To find the opposite of \frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}, find the opposite of each term.
x^{2}-\frac{2}{5}xy-\frac{11}{45}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine \frac{1}{25}y^{2} and -\frac{64}{225}y^{2} to get -\frac{11}{45}y^{2}.
x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine -\frac{2}{5}xy and -\frac{88}{15}yx to get -\frac{94}{15}xy.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine x^{2} and -\frac{121}{4}x^{2} to get -\frac{117}{4}x^{2}.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\frac{81}{4}x^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}.
-9x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine -\frac{117}{4}x^{2} and \frac{81}{4}x^{2} to get -9x^{2}.
-9x^{2}-\frac{4}{15}xy-\frac{11}{45}y^{2}+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine -\frac{94}{15}xy and 6xy to get -\frac{4}{15}xy.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine -\frac{11}{45}y^{2} and \frac{4}{9}y^{2} to get \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y\right)^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Consider \left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}\right)^{2}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Expand \left(\frac{1}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Calculate \frac{1}{5} to the power of 2 and get \frac{1}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-3^{2}x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Expand \left(3x\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Calculate 3 to the power of 2 and get 9.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}\right)^{2}y^{2}\right)
Expand \left(-\frac{2}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\frac{4}{25}y^{2}\right)
Calculate -\frac{2}{5} to the power of 2 and get \frac{4}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{5}y^{2}-9x^{2}\right)
Combine \frac{1}{25}y^{2} and \frac{4}{25}y^{2} to get \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\frac{1}{5}y^{2}+9x^{2}
To find the opposite of \frac{1}{5}y^{2}-9x^{2}, find the opposite of each term.
-9x^{2}-\frac{4}{15}xy+9x^{2}
Combine \frac{1}{5}y^{2} and -\frac{1}{5}y^{2} to get 0.
-\frac{4}{15}xy
Combine -9x^{2} and 9x^{2} to get 0.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{5}y\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}\right)+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}.
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\frac{64}{225}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
To find the opposite of \frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}, find the opposite of each term.
x^{2}-\frac{2}{5}xy-\frac{11}{45}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine \frac{1}{25}y^{2} and -\frac{64}{225}y^{2} to get -\frac{11}{45}y^{2}.
x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine -\frac{2}{5}xy and -\frac{88}{15}yx to get -\frac{94}{15}xy.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine x^{2} and -\frac{121}{4}x^{2} to get -\frac{117}{4}x^{2}.
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\frac{81}{4}x^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}.
-9x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine -\frac{117}{4}x^{2} and \frac{81}{4}x^{2} to get -9x^{2}.
-9x^{2}-\frac{4}{15}xy-\frac{11}{45}y^{2}+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine -\frac{94}{15}xy and 6xy to get -\frac{4}{15}xy.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Combine -\frac{11}{45}y^{2} and \frac{4}{9}y^{2} to get \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y\right)^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Consider \left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}\right)^{2}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Expand \left(\frac{1}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Calculate \frac{1}{5} to the power of 2 and get \frac{1}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-3^{2}x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Expand \left(3x\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Calculate 3 to the power of 2 and get 9.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}\right)^{2}y^{2}\right)
Expand \left(-\frac{2}{5}y\right)^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\frac{4}{25}y^{2}\right)
Calculate -\frac{2}{5} to the power of 2 and get \frac{4}{25}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{5}y^{2}-9x^{2}\right)
Combine \frac{1}{25}y^{2} and \frac{4}{25}y^{2} to get \frac{1}{5}y^{2}.
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\frac{1}{5}y^{2}+9x^{2}
To find the opposite of \frac{1}{5}y^{2}-9x^{2}, find the opposite of each term.
-9x^{2}-\frac{4}{15}xy+9x^{2}
Combine \frac{1}{5}y^{2} and -\frac{1}{5}y^{2} to get 0.
-\frac{4}{15}xy
Combine -9x^{2} and 9x^{2} to get 0.