Solve for x
x=-\frac{1}{15}\approx -0.066666667
Graph
Share
Copied to clipboard
x\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{2}-\frac{4}{5}=-1
Use the distributive property to multiply x-\frac{1}{3} by \frac{1}{2}.
x\times \frac{1}{2}+\frac{-1}{3\times 2}-\frac{4}{5}=-1
Multiply -\frac{1}{3} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{1}{2}+\frac{-1}{6}-\frac{4}{5}=-1
Do the multiplications in the fraction \frac{-1}{3\times 2}.
x\times \frac{1}{2}-\frac{1}{6}-\frac{4}{5}=-1
Fraction \frac{-1}{6} can be rewritten as -\frac{1}{6} by extracting the negative sign.
x\times \frac{1}{2}-\frac{5}{30}-\frac{24}{30}=-1
Least common multiple of 6 and 5 is 30. Convert -\frac{1}{6} and \frac{4}{5} to fractions with denominator 30.
x\times \frac{1}{2}+\frac{-5-24}{30}=-1
Since -\frac{5}{30} and \frac{24}{30} have the same denominator, subtract them by subtracting their numerators.
x\times \frac{1}{2}-\frac{29}{30}=-1
Subtract 24 from -5 to get -29.
x\times \frac{1}{2}=-1+\frac{29}{30}
Add \frac{29}{30} to both sides.
x\times \frac{1}{2}=-\frac{30}{30}+\frac{29}{30}
Convert -1 to fraction -\frac{30}{30}.
x\times \frac{1}{2}=\frac{-30+29}{30}
Since -\frac{30}{30} and \frac{29}{30} have the same denominator, add them by adding their numerators.
x\times \frac{1}{2}=-\frac{1}{30}
Add -30 and 29 to get -1.
x=-\frac{1}{30}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x=\frac{-2}{30}
Express -\frac{1}{30}\times 2 as a single fraction.
x=-\frac{1}{15}
Reduce the fraction \frac{-2}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}