Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{2}{3}x+\frac{1}{9}+\frac{2}{3}x=\frac{10}{9}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{3}\right)^{2}.
x^{2}+\frac{1}{9}=\frac{10}{9}
Combine -\frac{2}{3}x and \frac{2}{3}x to get 0.
x^{2}+\frac{1}{9}-\frac{10}{9}=0
Subtract \frac{10}{9} from both sides.
x^{2}-1=0
Subtract \frac{10}{9} from \frac{1}{9} to get -1.
\left(x-1\right)\left(x+1\right)=0
Consider x^{2}-1. Rewrite x^{2}-1 as x^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
To find equation solutions, solve x-1=0 and x+1=0.
x^{2}-\frac{2}{3}x+\frac{1}{9}+\frac{2}{3}x=\frac{10}{9}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{3}\right)^{2}.
x^{2}+\frac{1}{9}=\frac{10}{9}
Combine -\frac{2}{3}x and \frac{2}{3}x to get 0.
x^{2}=\frac{10}{9}-\frac{1}{9}
Subtract \frac{1}{9} from both sides.
x^{2}=1
Subtract \frac{1}{9} from \frac{10}{9} to get 1.
x=1 x=-1
Take the square root of both sides of the equation.
x^{2}-\frac{2}{3}x+\frac{1}{9}+\frac{2}{3}x=\frac{10}{9}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{1}{3}\right)^{2}.
x^{2}+\frac{1}{9}=\frac{10}{9}
Combine -\frac{2}{3}x and \frac{2}{3}x to get 0.
x^{2}+\frac{1}{9}-\frac{10}{9}=0
Subtract \frac{10}{9} from both sides.
x^{2}-1=0
Subtract \frac{10}{9} from \frac{1}{9} to get -1.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)}}{2}
Square 0.
x=\frac{0±\sqrt{4}}{2}
Multiply -4 times -1.
x=\frac{0±2}{2}
Take the square root of 4.
x=1
Now solve the equation x=\frac{0±2}{2} when ± is plus. Divide 2 by 2.
x=-1
Now solve the equation x=\frac{0±2}{2} when ± is minus. Divide -2 by 2.
x=1 x=-1
The equation is now solved.