Evaluate
-\frac{1}{2-x}
Expand
-\frac{1}{2-x}
Graph
Share
Copied to clipboard
\frac{\frac{x\left(2-x\right)}{2-x}-\frac{1}{2-x}}{\left(x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2-x}{2-x}.
\frac{\frac{x\left(2-x\right)-1}{2-x}}{\left(x-1\right)^{2}}
Since \frac{x\left(2-x\right)}{2-x} and \frac{1}{2-x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x-x^{2}-1}{2-x}}{\left(x-1\right)^{2}}
Do the multiplications in x\left(2-x\right)-1.
\frac{2x-x^{2}-1}{\left(2-x\right)\left(x-1\right)^{2}}
Express \frac{\frac{2x-x^{2}-1}{2-x}}{\left(x-1\right)^{2}} as a single fraction.
\frac{\left(x-1\right)\left(-x+1\right)}{\left(-x+2\right)\left(x-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{-x+1}{\left(x-1\right)\left(-x+2\right)}
Cancel out x-1 in both numerator and denominator.
\frac{-x+1}{-x^{2}+3x-2}
Expand the expression.
\frac{-x+1}{\left(x-2\right)\left(-x+1\right)}
Factor the expressions that are not already factored.
\frac{1}{x-2}
Cancel out -x+1 in both numerator and denominator.
\frac{\frac{x\left(2-x\right)}{2-x}-\frac{1}{2-x}}{\left(x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2-x}{2-x}.
\frac{\frac{x\left(2-x\right)-1}{2-x}}{\left(x-1\right)^{2}}
Since \frac{x\left(2-x\right)}{2-x} and \frac{1}{2-x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x-x^{2}-1}{2-x}}{\left(x-1\right)^{2}}
Do the multiplications in x\left(2-x\right)-1.
\frac{2x-x^{2}-1}{\left(2-x\right)\left(x-1\right)^{2}}
Express \frac{\frac{2x-x^{2}-1}{2-x}}{\left(x-1\right)^{2}} as a single fraction.
\frac{\left(x-1\right)\left(-x+1\right)}{\left(-x+2\right)\left(x-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{-x+1}{\left(x-1\right)\left(-x+2\right)}
Cancel out x-1 in both numerator and denominator.
\frac{-x+1}{-x^{2}+3x-2}
Expand the expression.
\frac{-x+1}{\left(x-2\right)\left(-x+1\right)}
Factor the expressions that are not already factored.
\frac{1}{x-2}
Cancel out -x+1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}