Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{x\left(1-x\right)}{1-x}-\frac{1+x}{1-x}\right)\left(\frac{2}{1+x^{2}}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{1-x}{1-x}.
\frac{x\left(1-x\right)-\left(1+x\right)}{1-x}\left(\frac{2}{1+x^{2}}-1\right)
Since \frac{x\left(1-x\right)}{1-x} and \frac{1+x}{1-x} have the same denominator, subtract them by subtracting their numerators.
\frac{x-x^{2}-1-x}{1-x}\left(\frac{2}{1+x^{2}}-1\right)
Do the multiplications in x\left(1-x\right)-\left(1+x\right).
\frac{-x^{2}-1}{1-x}\left(\frac{2}{1+x^{2}}-1\right)
Combine like terms in x-x^{2}-1-x.
\frac{-x^{2}-1}{1-x}\left(\frac{2}{1+x^{2}}-\frac{1+x^{2}}{1+x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+x^{2}}{1+x^{2}}.
\frac{-x^{2}-1}{1-x}\times \frac{2-\left(1+x^{2}\right)}{1+x^{2}}
Since \frac{2}{1+x^{2}} and \frac{1+x^{2}}{1+x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}-1}{1-x}\times \frac{2-1-x^{2}}{1+x^{2}}
Do the multiplications in 2-\left(1+x^{2}\right).
\frac{-x^{2}-1}{1-x}\times \frac{1-x^{2}}{1+x^{2}}
Combine like terms in 2-1-x^{2}.
\frac{\left(-x^{2}-1\right)\left(1-x^{2}\right)}{\left(1-x\right)\left(1+x^{2}\right)}
Multiply \frac{-x^{2}-1}{1-x} times \frac{1-x^{2}}{1+x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-x^{2}+1\right)\left(x^{2}+1\right)}{\left(-x+1\right)\left(x^{2}+1\right)}
Extract the negative sign in -x^{2}-1.
\frac{-\left(-x^{2}+1\right)}{-x+1}
Cancel out x^{2}+1 in both numerator and denominator.
\frac{-\left(x-1\right)\left(-x-1\right)}{-x+1}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(-x-1\right)\left(-x+1\right)}{-x+1}
Extract the negative sign in -1+x.
-\left(-1\right)\left(-x-1\right)
Cancel out -x+1 in both numerator and denominator.
-x-1
Expand the expression.
\left(\frac{x\left(1-x\right)}{1-x}-\frac{1+x}{1-x}\right)\left(\frac{2}{1+x^{2}}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{1-x}{1-x}.
\frac{x\left(1-x\right)-\left(1+x\right)}{1-x}\left(\frac{2}{1+x^{2}}-1\right)
Since \frac{x\left(1-x\right)}{1-x} and \frac{1+x}{1-x} have the same denominator, subtract them by subtracting their numerators.
\frac{x-x^{2}-1-x}{1-x}\left(\frac{2}{1+x^{2}}-1\right)
Do the multiplications in x\left(1-x\right)-\left(1+x\right).
\frac{-x^{2}-1}{1-x}\left(\frac{2}{1+x^{2}}-1\right)
Combine like terms in x-x^{2}-1-x.
\frac{-x^{2}-1}{1-x}\left(\frac{2}{1+x^{2}}-\frac{1+x^{2}}{1+x^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+x^{2}}{1+x^{2}}.
\frac{-x^{2}-1}{1-x}\times \frac{2-\left(1+x^{2}\right)}{1+x^{2}}
Since \frac{2}{1+x^{2}} and \frac{1+x^{2}}{1+x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-x^{2}-1}{1-x}\times \frac{2-1-x^{2}}{1+x^{2}}
Do the multiplications in 2-\left(1+x^{2}\right).
\frac{-x^{2}-1}{1-x}\times \frac{1-x^{2}}{1+x^{2}}
Combine like terms in 2-1-x^{2}.
\frac{\left(-x^{2}-1\right)\left(1-x^{2}\right)}{\left(1-x\right)\left(1+x^{2}\right)}
Multiply \frac{-x^{2}-1}{1-x} times \frac{1-x^{2}}{1+x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-x^{2}+1\right)\left(x^{2}+1\right)}{\left(-x+1\right)\left(x^{2}+1\right)}
Extract the negative sign in -x^{2}-1.
\frac{-\left(-x^{2}+1\right)}{-x+1}
Cancel out x^{2}+1 in both numerator and denominator.
\frac{-\left(x-1\right)\left(-x-1\right)}{-x+1}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(-x-1\right)\left(-x+1\right)}{-x+1}
Extract the negative sign in -1+x.
-\left(-1\right)\left(-x-1\right)
Cancel out -x+1 in both numerator and denominator.
-x-1
Expand the expression.