Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=x^{2}+22x+121+\left(x-3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+11\right)^{2}.
x^{2}=x^{2}+22x+121+x^{2}-6x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}=2x^{2}+22x+121-6x+9
Combine x^{2} and x^{2} to get 2x^{2}.
x^{2}=2x^{2}+16x+121+9
Combine 22x and -6x to get 16x.
x^{2}=2x^{2}+16x+130
Add 121 and 9 to get 130.
x^{2}-2x^{2}=16x+130
Subtract 2x^{2} from both sides.
-x^{2}=16x+130
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-16x=130
Subtract 16x from both sides.
-x^{2}-16x-130=0
Subtract 130 from both sides.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-1\right)\left(-130\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -16 for b, and -130 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-1\right)\left(-130\right)}}{2\left(-1\right)}
Square -16.
x=\frac{-\left(-16\right)±\sqrt{256+4\left(-130\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-16\right)±\sqrt{256-520}}{2\left(-1\right)}
Multiply 4 times -130.
x=\frac{-\left(-16\right)±\sqrt{-264}}{2\left(-1\right)}
Add 256 to -520.
x=\frac{-\left(-16\right)±2\sqrt{66}i}{2\left(-1\right)}
Take the square root of -264.
x=\frac{16±2\sqrt{66}i}{2\left(-1\right)}
The opposite of -16 is 16.
x=\frac{16±2\sqrt{66}i}{-2}
Multiply 2 times -1.
x=\frac{16+2\sqrt{66}i}{-2}
Now solve the equation x=\frac{16±2\sqrt{66}i}{-2} when ± is plus. Add 16 to 2i\sqrt{66}.
x=-\sqrt{66}i-8
Divide 16+2i\sqrt{66} by -2.
x=\frac{-2\sqrt{66}i+16}{-2}
Now solve the equation x=\frac{16±2\sqrt{66}i}{-2} when ± is minus. Subtract 2i\sqrt{66} from 16.
x=-8+\sqrt{66}i
Divide 16-2i\sqrt{66} by -2.
x=-\sqrt{66}i-8 x=-8+\sqrt{66}i
The equation is now solved.
x^{2}=x^{2}+22x+121+\left(x-3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+11\right)^{2}.
x^{2}=x^{2}+22x+121+x^{2}-6x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}=2x^{2}+22x+121-6x+9
Combine x^{2} and x^{2} to get 2x^{2}.
x^{2}=2x^{2}+16x+121+9
Combine 22x and -6x to get 16x.
x^{2}=2x^{2}+16x+130
Add 121 and 9 to get 130.
x^{2}-2x^{2}=16x+130
Subtract 2x^{2} from both sides.
-x^{2}=16x+130
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-16x=130
Subtract 16x from both sides.
\frac{-x^{2}-16x}{-1}=\frac{130}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{16}{-1}\right)x=\frac{130}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+16x=\frac{130}{-1}
Divide -16 by -1.
x^{2}+16x=-130
Divide 130 by -1.
x^{2}+16x+8^{2}=-130+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+16x+64=-130+64
Square 8.
x^{2}+16x+64=-66
Add -130 to 64.
\left(x+8\right)^{2}=-66
Factor x^{2}+16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{-66}
Take the square root of both sides of the equation.
x+8=\sqrt{66}i x+8=-\sqrt{66}i
Simplify.
x=-8+\sqrt{66}i x=-\sqrt{66}i-8
Subtract 8 from both sides of the equation.