Skip to main content
Solve for d
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

x=x^{3}-2x^{2}+4x-5ma^{2}knilaidari\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2
Multiply a and a to get a^{2}.
x=x^{3}-2x^{2}+4x-5ma^{3}knilidari\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x=x^{3}-2x^{2}+4x-5ma^{4}knilidri\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
x=x^{3}-2x^{2}+4x-5ima^{4}knlidri\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2
Multiply 5 and i to get 5i.
x=x^{3}-2x^{2}+4x-\left(-5ma^{4}knldri\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2\right)
Multiply 5i and i to get -5.
x=x^{3}-2x^{2}+4x-\left(-5ima^{4}knldr\frac{\mathrm{d}}{\mathrm{d}x}(f)\times 2\right)
Multiply -5 and i to get -5i.
x=x^{3}-2x^{2}+4x-\left(-10ima^{4}knldr\frac{\mathrm{d}}{\mathrm{d}x}(f)\right)
Multiply -5i and 2 to get -10i.
x^{3}-2x^{2}+4x-\left(-10ima^{4}knldr\frac{\mathrm{d}}{\mathrm{d}x}(f)\right)=x
Swap sides so that all variable terms are on the left hand side.
x^{3}-2x^{2}+4x+10ima^{4}knldr\frac{\mathrm{d}}{\mathrm{d}x}(f)=x
Multiply -1 and -10i to get 10i.
-2x^{2}+4x+10ima^{4}knldr\frac{\mathrm{d}}{\mathrm{d}x}(f)=x-x^{3}
Subtract x^{3} from both sides.
4x+10ima^{4}knldr\frac{\mathrm{d}}{\mathrm{d}x}(f)=x-x^{3}+2x^{2}
Add 2x^{2} to both sides.
10ima^{4}knldr\frac{\mathrm{d}}{\mathrm{d}x}(f)=x-x^{3}+2x^{2}-4x
Subtract 4x from both sides.
10ima^{4}knldr\frac{\mathrm{d}}{\mathrm{d}x}(f)=-3x-x^{3}+2x^{2}
Combine x and -4x to get -3x.
0=-x^{3}+2x^{2}-3x
The equation is in standard form.
d\in
This is false for any d.