Solve for c
\left\{\begin{matrix}c=\frac{1}{x\left(x-1\right)\left(x+2\right)^{3}}\text{, }&x\neq -2\text{ and }x\neq 1\text{ and }x\neq 0\\c\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x=cx^{2}\left(x^{3}+6x^{2}+12x+8\right)\left(x-1\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+2\right)^{3}.
x=\left(cx^{5}+6cx^{4}+12cx^{3}+8cx^{2}\right)\left(x-1\right)
Use the distributive property to multiply cx^{2} by x^{3}+6x^{2}+12x+8.
x=cx^{6}+5cx^{5}+6x^{4}c-4x^{3}c-8x^{2}c
Use the distributive property to multiply cx^{5}+6cx^{4}+12cx^{3}+8cx^{2} by x-1 and combine like terms.
cx^{6}+5cx^{5}+6x^{4}c-4x^{3}c-8x^{2}c=x
Swap sides so that all variable terms are on the left hand side.
\left(x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}\right)c=x
Combine all terms containing c.
\frac{\left(x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}\right)c}{x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}}=\frac{x}{x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}}
Divide both sides by x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}.
c=\frac{x}{x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}}
Dividing by x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2} undoes the multiplication by x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}.
c=\frac{1}{x\left(x-1\right)\left(x+2\right)^{3}}
Divide x by x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}