Skip to main content
Solve for c
Tick mark Image
Graph

Similar Problems from Web Search

Share

x=cx^{2}\left(x^{3}+6x^{2}+12x+8\right)\left(x-1\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+2\right)^{3}.
x=\left(cx^{5}+6cx^{4}+12cx^{3}+8cx^{2}\right)\left(x-1\right)
Use the distributive property to multiply cx^{2} by x^{3}+6x^{2}+12x+8.
x=cx^{6}+5cx^{5}+6x^{4}c-4x^{3}c-8x^{2}c
Use the distributive property to multiply cx^{5}+6cx^{4}+12cx^{3}+8cx^{2} by x-1 and combine like terms.
cx^{6}+5cx^{5}+6x^{4}c-4x^{3}c-8x^{2}c=x
Swap sides so that all variable terms are on the left hand side.
\left(x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}\right)c=x
Combine all terms containing c.
\frac{\left(x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}\right)c}{x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}}=\frac{x}{x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}}
Divide both sides by x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}.
c=\frac{x}{x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}}
Dividing by x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2} undoes the multiplication by x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}.
c=\frac{1}{x\left(x-1\right)\left(x+2\right)^{3}}
Divide x by x^{6}+5x^{5}+6x^{4}-4x^{3}-8x^{2}.