Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+4=3\sqrt{x}
Subtract -4 from both sides of the equation.
\left(x+4\right)^{2}=\left(3\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}+8x+16=\left(3\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16=3^{2}\left(\sqrt{x}\right)^{2}
Expand \left(3\sqrt{x}\right)^{2}.
x^{2}+8x+16=9\left(\sqrt{x}\right)^{2}
Calculate 3 to the power of 2 and get 9.
x^{2}+8x+16=9x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}+8x+16-9x=0
Subtract 9x from both sides.
x^{2}-x+16=0
Combine 8x and -9x to get -x.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 16}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-64}}{2}
Multiply -4 times 16.
x=\frac{-\left(-1\right)±\sqrt{-63}}{2}
Add 1 to -64.
x=\frac{-\left(-1\right)±3\sqrt{7}i}{2}
Take the square root of -63.
x=\frac{1±3\sqrt{7}i}{2}
The opposite of -1 is 1.
x=\frac{1+3\sqrt{7}i}{2}
Now solve the equation x=\frac{1±3\sqrt{7}i}{2} when ± is plus. Add 1 to 3i\sqrt{7}.
x=\frac{-3\sqrt{7}i+1}{2}
Now solve the equation x=\frac{1±3\sqrt{7}i}{2} when ± is minus. Subtract 3i\sqrt{7} from 1.
x=\frac{1+3\sqrt{7}i}{2} x=\frac{-3\sqrt{7}i+1}{2}
The equation is now solved.
\frac{1+3\sqrt{7}i}{2}=3\sqrt{\frac{1+3\sqrt{7}i}{2}}-4
Substitute \frac{1+3\sqrt{7}i}{2} for x in the equation x=3\sqrt{x}-4.
\frac{1}{2}+\frac{3}{2}i\times 7^{\frac{1}{2}}=\frac{1}{2}+\frac{3}{2}i\times 7^{\frac{1}{2}}
Simplify. The value x=\frac{1+3\sqrt{7}i}{2} satisfies the equation.
\frac{-3\sqrt{7}i+1}{2}=3\sqrt{\frac{-3\sqrt{7}i+1}{2}}-4
Substitute \frac{-3\sqrt{7}i+1}{2} for x in the equation x=3\sqrt{x}-4.
-\frac{3}{2}i\times 7^{\frac{1}{2}}+\frac{1}{2}=-\frac{17}{2}+\frac{3}{2}i\times 7^{\frac{1}{2}}
Simplify. The value x=\frac{-3\sqrt{7}i+1}{2} does not satisfy the equation.
x=\frac{1+3\sqrt{7}i}{2}
Equation x+4=3\sqrt{x} has a unique solution.