Solve for x
x = \frac{\sqrt{37} + 19}{2} \approx 12.541381265
x = \frac{19 - \sqrt{37}}{2} \approx 6.458618735
Graph
Share
Copied to clipboard
x=x^{2}-18x+81
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-9\right)^{2}.
x-x^{2}=-18x+81
Subtract x^{2} from both sides.
x-x^{2}+18x=81
Add 18x to both sides.
19x-x^{2}=81
Combine x and 18x to get 19x.
19x-x^{2}-81=0
Subtract 81 from both sides.
-x^{2}+19x-81=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-19±\sqrt{19^{2}-4\left(-1\right)\left(-81\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 19 for b, and -81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\left(-1\right)\left(-81\right)}}{2\left(-1\right)}
Square 19.
x=\frac{-19±\sqrt{361+4\left(-81\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-19±\sqrt{361-324}}{2\left(-1\right)}
Multiply 4 times -81.
x=\frac{-19±\sqrt{37}}{2\left(-1\right)}
Add 361 to -324.
x=\frac{-19±\sqrt{37}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{37}-19}{-2}
Now solve the equation x=\frac{-19±\sqrt{37}}{-2} when ± is plus. Add -19 to \sqrt{37}.
x=\frac{19-\sqrt{37}}{2}
Divide -19+\sqrt{37} by -2.
x=\frac{-\sqrt{37}-19}{-2}
Now solve the equation x=\frac{-19±\sqrt{37}}{-2} when ± is minus. Subtract \sqrt{37} from -19.
x=\frac{\sqrt{37}+19}{2}
Divide -19-\sqrt{37} by -2.
x=\frac{19-\sqrt{37}}{2} x=\frac{\sqrt{37}+19}{2}
The equation is now solved.
x=x^{2}-18x+81
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-9\right)^{2}.
x-x^{2}=-18x+81
Subtract x^{2} from both sides.
x-x^{2}+18x=81
Add 18x to both sides.
19x-x^{2}=81
Combine x and 18x to get 19x.
-x^{2}+19x=81
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+19x}{-1}=\frac{81}{-1}
Divide both sides by -1.
x^{2}+\frac{19}{-1}x=\frac{81}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-19x=\frac{81}{-1}
Divide 19 by -1.
x^{2}-19x=-81
Divide 81 by -1.
x^{2}-19x+\left(-\frac{19}{2}\right)^{2}=-81+\left(-\frac{19}{2}\right)^{2}
Divide -19, the coefficient of the x term, by 2 to get -\frac{19}{2}. Then add the square of -\frac{19}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-19x+\frac{361}{4}=-81+\frac{361}{4}
Square -\frac{19}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-19x+\frac{361}{4}=\frac{37}{4}
Add -81 to \frac{361}{4}.
\left(x-\frac{19}{2}\right)^{2}=\frac{37}{4}
Factor x^{2}-19x+\frac{361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
Take the square root of both sides of the equation.
x-\frac{19}{2}=\frac{\sqrt{37}}{2} x-\frac{19}{2}=-\frac{\sqrt{37}}{2}
Simplify.
x=\frac{\sqrt{37}+19}{2} x=\frac{19-\sqrt{37}}{2}
Add \frac{19}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}