Evaluate
\frac{\left(x^{2}-1\right)\left(x^{8}+1\right)}{x^{5}}
Expand
x^{5}-x^{3}+\frac{1}{x^{3}}-\frac{1}{x^{5}}
Graph
Quiz
Polynomial
5 problems similar to:
( x ^ { 4 } + \frac { 1 } { x ^ { 4 } } ) ( x - \frac { 1 } { x } )
Share
Copied to clipboard
\left(\frac{x^{4}x^{4}}{x^{4}}+\frac{1}{x^{4}}\right)\left(x-\frac{1}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{4} times \frac{x^{4}}{x^{4}}.
\frac{x^{4}x^{4}+1}{x^{4}}\left(x-\frac{1}{x}\right)
Since \frac{x^{4}x^{4}}{x^{4}} and \frac{1}{x^{4}} have the same denominator, add them by adding their numerators.
\frac{x^{8}+1}{x^{4}}\left(x-\frac{1}{x}\right)
Do the multiplications in x^{4}x^{4}+1.
\frac{x^{8}+1}{x^{4}}\left(\frac{xx}{x}-\frac{1}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x^{8}+1}{x^{4}}\times \frac{xx-1}{x}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{8}+1}{x^{4}}\times \frac{x^{2}-1}{x}
Do the multiplications in xx-1.
\frac{\left(x^{8}+1\right)\left(x^{2}-1\right)}{x^{4}x}
Multiply \frac{x^{8}+1}{x^{4}} times \frac{x^{2}-1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{8}+1\right)\left(x^{2}-1\right)}{x^{5}}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{x^{10}-x^{8}+x^{2}-1}{x^{5}}
Use the distributive property to multiply x^{8}+1 by x^{2}-1.
\left(\frac{x^{4}x^{4}}{x^{4}}+\frac{1}{x^{4}}\right)\left(x-\frac{1}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{4} times \frac{x^{4}}{x^{4}}.
\frac{x^{4}x^{4}+1}{x^{4}}\left(x-\frac{1}{x}\right)
Since \frac{x^{4}x^{4}}{x^{4}} and \frac{1}{x^{4}} have the same denominator, add them by adding their numerators.
\frac{x^{8}+1}{x^{4}}\left(x-\frac{1}{x}\right)
Do the multiplications in x^{4}x^{4}+1.
\frac{x^{8}+1}{x^{4}}\left(\frac{xx}{x}-\frac{1}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{x^{8}+1}{x^{4}}\times \frac{xx-1}{x}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{8}+1}{x^{4}}\times \frac{x^{2}-1}{x}
Do the multiplications in xx-1.
\frac{\left(x^{8}+1\right)\left(x^{2}-1\right)}{x^{4}x}
Multiply \frac{x^{8}+1}{x^{4}} times \frac{x^{2}-1}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x^{8}+1\right)\left(x^{2}-1\right)}{x^{5}}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{x^{10}-x^{8}+x^{2}-1}{x^{5}}
Use the distributive property to multiply x^{8}+1 by x^{2}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}