Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}\right)^{2}-16x^{2}+64+4\left(x^{2}-8\right)-5=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-8\right)^{2}.
x^{4}-16x^{2}+64+4\left(x^{2}-8\right)-5=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-16x^{2}+64+4x^{2}-32-5=0
Use the distributive property to multiply 4 by x^{2}-8.
x^{4}-12x^{2}+64-32-5=0
Combine -16x^{2} and 4x^{2} to get -12x^{2}.
x^{4}-12x^{2}+32-5=0
Subtract 32 from 64 to get 32.
x^{4}-12x^{2}+27=0
Subtract 5 from 32 to get 27.
t^{2}-12t+27=0
Substitute t for x^{2}.
t=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 1\times 27}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -12 for b, and 27 for c in the quadratic formula.
t=\frac{12±6}{2}
Do the calculations.
t=9 t=3
Solve the equation t=\frac{12±6}{2} when ± is plus and when ± is minus.
x=3 x=-3 x=\sqrt{3} x=-\sqrt{3}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.