Solve for x
x=-3
x=3
x=\sqrt{3}\approx 1.732050808
x=-\sqrt{3}\approx -1.732050808
Graph
Quiz
Quadratic Equation
5 problems similar to:
( x ^ { 2 } - 8 ) ^ { 2 } + 4 ( x ^ { 2 } - 8 ) - 5 = 0
Share
Copied to clipboard
\left(x^{2}\right)^{2}-16x^{2}+64+4\left(x^{2}-8\right)-5=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-8\right)^{2}.
x^{4}-16x^{2}+64+4\left(x^{2}-8\right)-5=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-16x^{2}+64+4x^{2}-32-5=0
Use the distributive property to multiply 4 by x^{2}-8.
x^{4}-12x^{2}+64-32-5=0
Combine -16x^{2} and 4x^{2} to get -12x^{2}.
x^{4}-12x^{2}+32-5=0
Subtract 32 from 64 to get 32.
x^{4}-12x^{2}+27=0
Subtract 5 from 32 to get 27.
t^{2}-12t+27=0
Substitute t for x^{2}.
t=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 1\times 27}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -12 for b, and 27 for c in the quadratic formula.
t=\frac{12±6}{2}
Do the calculations.
t=9 t=3
Solve the equation t=\frac{12±6}{2} when ± is plus and when ± is minus.
x=3 x=-3 x=\sqrt{3} x=-\sqrt{3}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}