Evaluate
-2x^{3}
Expand
-2x^{3}
Graph
Share
Copied to clipboard
\left(x^{2}+1\right)^{3}-\left(x^{3}+1\right)^{2}+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1-\left(x^{3}+1\right)^{2}+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x^{2}+1\right)^{3}.
x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1-\left(x^{3}+1\right)^{2}+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
x^{6}+3x^{4}+3x^{2}+1-\left(x^{3}+1\right)^{2}+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{6}+3x^{4}+3x^{2}+1-\left(\left(x^{3}\right)^{2}+2x^{3}+1\right)+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{3}+1\right)^{2}.
x^{6}+3x^{4}+3x^{2}+1-\left(x^{6}+2x^{3}+1\right)+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
x^{6}+3x^{4}+3x^{2}+1-x^{6}-2x^{3}-1+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
To find the opposite of x^{6}+2x^{3}+1, find the opposite of each term.
3x^{4}+3x^{2}+1-2x^{3}-1+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
Combine x^{6} and -x^{6} to get 0.
3x^{4}+3x^{2}-2x^{3}+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
Subtract 1 from 1 to get 0.
3x^{4}+3x^{2}-2x^{3}+\left(3x^{3}+3x^{2}\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
Use the distributive property to multiply 3x^{2} by x+1.
3x^{4}+3x^{2}-2x^{3}+3x^{4}-3x^{2}-\left(-3x^{4}\left(-2\right)\right)
Use the distributive property to multiply 3x^{3}+3x^{2} by x-1 and combine like terms.
6x^{4}+3x^{2}-2x^{3}-3x^{2}-\left(-3x^{4}\left(-2\right)\right)
Combine 3x^{4} and 3x^{4} to get 6x^{4}.
6x^{4}-2x^{3}-\left(-3x^{4}\left(-2\right)\right)
Combine 3x^{2} and -3x^{2} to get 0.
6x^{4}-2x^{3}-6x^{4}
Multiply -3 and -2 to get 6.
-2x^{3}
Combine 6x^{4} and -6x^{4} to get 0.
\left(x^{2}+1\right)^{3}-\left(x^{3}+1\right)^{2}+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1-\left(x^{3}+1\right)^{2}+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x^{2}+1\right)^{3}.
x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1-\left(x^{3}+1\right)^{2}+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
x^{6}+3x^{4}+3x^{2}+1-\left(x^{3}+1\right)^{2}+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{6}+3x^{4}+3x^{2}+1-\left(\left(x^{3}\right)^{2}+2x^{3}+1\right)+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{3}+1\right)^{2}.
x^{6}+3x^{4}+3x^{2}+1-\left(x^{6}+2x^{3}+1\right)+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
x^{6}+3x^{4}+3x^{2}+1-x^{6}-2x^{3}-1+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
To find the opposite of x^{6}+2x^{3}+1, find the opposite of each term.
3x^{4}+3x^{2}+1-2x^{3}-1+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
Combine x^{6} and -x^{6} to get 0.
3x^{4}+3x^{2}-2x^{3}+3x^{2}\left(x+1\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
Subtract 1 from 1 to get 0.
3x^{4}+3x^{2}-2x^{3}+\left(3x^{3}+3x^{2}\right)\left(x-1\right)-\left(-3x^{4}\left(-2\right)\right)
Use the distributive property to multiply 3x^{2} by x+1.
3x^{4}+3x^{2}-2x^{3}+3x^{4}-3x^{2}-\left(-3x^{4}\left(-2\right)\right)
Use the distributive property to multiply 3x^{3}+3x^{2} by x-1 and combine like terms.
6x^{4}+3x^{2}-2x^{3}-3x^{2}-\left(-3x^{4}\left(-2\right)\right)
Combine 3x^{4} and 3x^{4} to get 6x^{4}.
6x^{4}-2x^{3}-\left(-3x^{4}\left(-2\right)\right)
Combine 3x^{2} and -3x^{2} to get 0.
6x^{4}-2x^{3}-6x^{4}
Multiply -3 and -2 to get 6.
-2x^{3}
Combine 6x^{4} and -6x^{4} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}