Solve for x (complex solution)
x=\sqrt{2\sqrt{15}-1}\approx 2.597299885
x=-\sqrt{2\sqrt{15}-1}\approx -2.597299885
x=-i\sqrt{2\sqrt{15}+1}\approx -0-2.95735806i
x=i\sqrt{2\sqrt{15}+1}\approx 2.95735806i
Solve for x
x=-\sqrt{2\sqrt{15}-1}\approx -2.597299885
x=\sqrt{2\sqrt{15}-1}\approx 2.597299885
Graph
Share
Copied to clipboard
\left(x^{2}\right)^{2}+2x^{2}+1=60
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+1\right)^{2}.
x^{4}+2x^{2}+1=60
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+2x^{2}+1-60=0
Subtract 60 from both sides.
x^{4}+2x^{2}-59=0
Subtract 60 from 1 to get -59.
t^{2}+2t-59=0
Substitute t for x^{2}.
t=\frac{-2±\sqrt{2^{2}-4\times 1\left(-59\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 2 for b, and -59 for c in the quadratic formula.
t=\frac{-2±4\sqrt{15}}{2}
Do the calculations.
t=2\sqrt{15}-1 t=-2\sqrt{15}-1
Solve the equation t=\frac{-2±4\sqrt{15}}{2} when ± is plus and when ± is minus.
x=-\sqrt{2\sqrt{15}-1} x=\sqrt{2\sqrt{15}-1} x=-i\sqrt{2\sqrt{15}+1} x=i\sqrt{2\sqrt{15}+1}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(x^{2}\right)^{2}+2x^{2}+1=60
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+1\right)^{2}.
x^{4}+2x^{2}+1=60
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+2x^{2}+1-60=0
Subtract 60 from both sides.
x^{4}+2x^{2}-59=0
Subtract 60 from 1 to get -59.
t^{2}+2t-59=0
Substitute t for x^{2}.
t=\frac{-2±\sqrt{2^{2}-4\times 1\left(-59\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 2 for b, and -59 for c in the quadratic formula.
t=\frac{-2±4\sqrt{15}}{2}
Do the calculations.
t=2\sqrt{15}-1 t=-2\sqrt{15}-1
Solve the equation t=\frac{-2±4\sqrt{15}}{2} when ± is plus and when ± is minus.
x=\sqrt{2\sqrt{15}-1} x=-\sqrt{2\sqrt{15}-1}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}