Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}\right)^{2}+2x^{2}+1=60
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+1\right)^{2}.
x^{4}+2x^{2}+1=60
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+2x^{2}+1-60=0
Subtract 60 from both sides.
x^{4}+2x^{2}-59=0
Subtract 60 from 1 to get -59.
t^{2}+2t-59=0
Substitute t for x^{2}.
t=\frac{-2±\sqrt{2^{2}-4\times 1\left(-59\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 2 for b, and -59 for c in the quadratic formula.
t=\frac{-2±4\sqrt{15}}{2}
Do the calculations.
t=2\sqrt{15}-1 t=-2\sqrt{15}-1
Solve the equation t=\frac{-2±4\sqrt{15}}{2} when ± is plus and when ± is minus.
x=-\sqrt{2\sqrt{15}-1} x=\sqrt{2\sqrt{15}-1} x=-i\sqrt{2\sqrt{15}+1} x=i\sqrt{2\sqrt{15}+1}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(x^{2}\right)^{2}+2x^{2}+1=60
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+1\right)^{2}.
x^{4}+2x^{2}+1=60
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+2x^{2}+1-60=0
Subtract 60 from both sides.
x^{4}+2x^{2}-59=0
Subtract 60 from 1 to get -59.
t^{2}+2t-59=0
Substitute t for x^{2}.
t=\frac{-2±\sqrt{2^{2}-4\times 1\left(-59\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 2 for b, and -59 for c in the quadratic formula.
t=\frac{-2±4\sqrt{15}}{2}
Do the calculations.
t=2\sqrt{15}-1 t=-2\sqrt{15}-1
Solve the equation t=\frac{-2±4\sqrt{15}}{2} when ± is plus and when ± is minus.
x=\sqrt{2\sqrt{15}-1} x=-\sqrt{2\sqrt{15}-1}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.