Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}\left(x^{2}-\sqrt{2}x\right)+x^{2}+\sqrt{2}x\left(x^{2}-\sqrt{2}x\right)+\sqrt{2}x+x^{2}-\sqrt{2}x+1
Use the distributive property to multiply x^{2}+\sqrt{2}x+1 by x^{2}-\sqrt{2}x+1.
x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x\left(x^{2}-\sqrt{2}x\right)+\sqrt{2}x+x^{2}-\sqrt{2}x+1
Use the distributive property to multiply x^{2} by x^{2}-\sqrt{2}x.
x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x^{3}-\left(\sqrt{2}\right)^{2}x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1
Use the distributive property to multiply \sqrt{2}x by x^{2}-\sqrt{2}x.
x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x^{3}-2x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1
The square of \sqrt{2} is 2.
x^{4}+x^{2}-2x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1
Combine -\sqrt{2}x^{3} and \sqrt{2}x^{3} to get 0.
x^{4}-x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1
Combine x^{2} and -2x^{2} to get -x^{2}.
x^{4}+\sqrt{2}x-\sqrt{2}x+1
Combine -x^{2} and x^{2} to get 0.
x^{4}+1
Combine \sqrt{2}x and -\sqrt{2}x to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\left(x^{2}-\sqrt{2}x\right)+x^{2}+\sqrt{2}x\left(x^{2}-\sqrt{2}x\right)+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
Use the distributive property to multiply x^{2}+\sqrt{2}x+1 by x^{2}-\sqrt{2}x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x\left(x^{2}-\sqrt{2}x\right)+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
Use the distributive property to multiply x^{2} by x^{2}-\sqrt{2}x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x^{3}-\left(\sqrt{2}\right)^{2}x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
Use the distributive property to multiply \sqrt{2}x by x^{2}-\sqrt{2}x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x^{3}-2x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
The square of \sqrt{2} is 2.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+x^{2}-2x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
Combine -\sqrt{2}x^{3} and \sqrt{2}x^{3} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
Combine x^{2} and -2x^{2} to get -x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+\sqrt{2}x-\sqrt{2}x+1)
Combine -x^{2} and x^{2} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+1)
Combine \sqrt{2}x and -\sqrt{2}x to get 0.
4x^{4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
4x^{3}
Subtract 1 from 4.