Evaluate
x^{4}+1
Differentiate w.r.t. x
4x^{3}
Graph
Quiz
Algebra
5 problems similar to:
( x ^ { 2 } + \sqrt { 2 } x + 1 ) ( x ^ { 2 } - \sqrt { 2 } x + 1 )
Share
Copied to clipboard
x^{2}\left(x^{2}-\sqrt{2}x\right)+x^{2}+\sqrt{2}x\left(x^{2}-\sqrt{2}x\right)+\sqrt{2}x+x^{2}-\sqrt{2}x+1
Use the distributive property to multiply x^{2}+\sqrt{2}x+1 by x^{2}-\sqrt{2}x+1.
x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x\left(x^{2}-\sqrt{2}x\right)+\sqrt{2}x+x^{2}-\sqrt{2}x+1
Use the distributive property to multiply x^{2} by x^{2}-\sqrt{2}x.
x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x^{3}-\left(\sqrt{2}\right)^{2}x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1
Use the distributive property to multiply \sqrt{2}x by x^{2}-\sqrt{2}x.
x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x^{3}-2x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1
The square of \sqrt{2} is 2.
x^{4}+x^{2}-2x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1
Combine -\sqrt{2}x^{3} and \sqrt{2}x^{3} to get 0.
x^{4}-x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1
Combine x^{2} and -2x^{2} to get -x^{2}.
x^{4}+\sqrt{2}x-\sqrt{2}x+1
Combine -x^{2} and x^{2} to get 0.
x^{4}+1
Combine \sqrt{2}x and -\sqrt{2}x to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}\left(x^{2}-\sqrt{2}x\right)+x^{2}+\sqrt{2}x\left(x^{2}-\sqrt{2}x\right)+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
Use the distributive property to multiply x^{2}+\sqrt{2}x+1 by x^{2}-\sqrt{2}x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x\left(x^{2}-\sqrt{2}x\right)+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
Use the distributive property to multiply x^{2} by x^{2}-\sqrt{2}x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x^{3}-\left(\sqrt{2}\right)^{2}x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
Use the distributive property to multiply \sqrt{2}x by x^{2}-\sqrt{2}x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-\sqrt{2}x^{3}+x^{2}+\sqrt{2}x^{3}-2x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
The square of \sqrt{2} is 2.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+x^{2}-2x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
Combine -\sqrt{2}x^{3} and \sqrt{2}x^{3} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-x^{2}+\sqrt{2}x+x^{2}-\sqrt{2}x+1)
Combine x^{2} and -2x^{2} to get -x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+\sqrt{2}x-\sqrt{2}x+1)
Combine -x^{2} and x^{2} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+1)
Combine \sqrt{2}x and -\sqrt{2}x to get 0.
4x^{4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
4x^{3}
Subtract 1 from 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}