Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

x+y-1+5ix-2iy+23i=0
Use the distributive property to multiply 5x-2y+23 by i.
\left(1+5i\right)x+y-1-2iy+23i=0
Combine x and 5ix to get \left(1+5i\right)x.
\left(1+5i\right)x+\left(1-2i\right)y-1+23i=0
Combine y and -2iy to get \left(1-2i\right)y.
\left(1+5i\right)x-1+23i=\left(-1+2i\right)y
Subtract \left(1-2i\right)y from both sides. Anything subtracted from zero gives its negation.
\left(1+5i\right)x+23i=\left(-1+2i\right)y+1
Add 1 to both sides.
\left(1+5i\right)x=\left(-1+2i\right)y+1-23i
Subtract 23i from both sides.
\left(1+5i\right)x=\left(-1+2i\right)y+\left(1-23i\right)
The equation is in standard form.
\frac{\left(1+5i\right)x}{1+5i}=\frac{\left(-1+2i\right)y+\left(1-23i\right)}{1+5i}
Divide both sides by 1+5i.
x=\frac{\left(-1+2i\right)y+\left(1-23i\right)}{1+5i}
Dividing by 1+5i undoes the multiplication by 1+5i.
x=\left(\frac{9}{26}+\frac{7}{26}i\right)y+\left(-\frac{57}{13}-\frac{14}{13}i\right)
Divide \left(-1+2i\right)y+\left(1-23i\right) by 1+5i.
x+y-1+5ix-2iy+23i=0
Use the distributive property to multiply 5x-2y+23 by i.
\left(1+5i\right)x+y-1-2iy+23i=0
Combine x and 5ix to get \left(1+5i\right)x.
\left(1+5i\right)x+\left(1-2i\right)y-1+23i=0
Combine y and -2iy to get \left(1-2i\right)y.
\left(1-2i\right)y-1+23i=\left(-1-5i\right)x
Subtract \left(1+5i\right)x from both sides. Anything subtracted from zero gives its negation.
\left(1-2i\right)y+23i=\left(-1-5i\right)x+1
Add 1 to both sides.
\left(1-2i\right)y=\left(-1-5i\right)x+1-23i
Subtract 23i from both sides.
\left(1-2i\right)y=\left(-1-5i\right)x+\left(1-23i\right)
The equation is in standard form.
\frac{\left(1-2i\right)y}{1-2i}=\frac{\left(-1-5i\right)x+\left(1-23i\right)}{1-2i}
Divide both sides by 1-2i.
y=\frac{\left(-1-5i\right)x+\left(1-23i\right)}{1-2i}
Dividing by 1-2i undoes the multiplication by 1-2i.
y=\left(\frac{9}{5}-\frac{7}{5}i\right)x+\left(\frac{47}{5}-\frac{21}{5}i\right)
Divide \left(-1-5i\right)x+\left(1-23i\right) by 1-2i.