Solve for h
\left\{\begin{matrix}h=-x+\frac{z}{k}\text{, }&k\neq 0\\h\in \mathrm{R}\text{, }&z=0\text{ and }k=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{z}{x+h}\text{, }&x\neq -h\\k\in \mathrm{R}\text{, }&z=0\text{ and }x=-h\end{matrix}\right.
Share
Copied to clipboard
xk+hk=z
Use the distributive property to multiply x+h by k.
hk=z-xk
Subtract xk from both sides.
kh=z-kx
The equation is in standard form.
\frac{kh}{k}=\frac{z-kx}{k}
Divide both sides by k.
h=\frac{z-kx}{k}
Dividing by k undoes the multiplication by k.
h=-x+\frac{z}{k}
Divide z-xk by k.
\frac{\left(x+h\right)k}{x+h}=\frac{z}{x+h}
Divide both sides by x+h.
k=\frac{z}{x+h}
Dividing by x+h undoes the multiplication by x+h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}