Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+xb+ax+ab=\left(x+a\right)x+\left(x+a\right)b
Use the distributive property to multiply x+a by x+b.
x^{2}+xb+ax+ab=x^{2}+ax+\left(x+a\right)b
Use the distributive property to multiply x+a by x.
x^{2}+xb+ax+ab=x^{2}+ax+xb+ab
Use the distributive property to multiply x+a by b.
x^{2}+xb+ax+ab-ax=x^{2}+xb+ab
Subtract ax from both sides.
x^{2}+xb+ab=x^{2}+xb+ab
Combine ax and -ax to get 0.
x^{2}+xb+ab-ab=x^{2}+xb
Subtract ab from both sides.
x^{2}+xb=x^{2}+xb
Combine ab and -ab to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
x^{2}+xb+ax+ab=\left(x+a\right)x+\left(x+a\right)b
Use the distributive property to multiply x+a by x+b.
x^{2}+xb+ax+ab=x^{2}+ax+\left(x+a\right)b
Use the distributive property to multiply x+a by x.
x^{2}+xb+ax+ab=x^{2}+ax+xb+ab
Use the distributive property to multiply x+a by b.
x^{2}+xb+ax+ab-xb=x^{2}+ax+ab
Subtract xb from both sides.
x^{2}+ax+ab=x^{2}+ax+ab
Combine xb and -xb to get 0.
x^{2}+ax+ab-ab=x^{2}+ax
Subtract ab from both sides.
x^{2}+ax=x^{2}+ax
Combine ab and -ab to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
x^{2}+xb+ax+ab=\left(x+a\right)x+\left(x+a\right)b
Use the distributive property to multiply x+a by x+b.
x^{2}+xb+ax+ab=x^{2}+ax+\left(x+a\right)b
Use the distributive property to multiply x+a by x.
x^{2}+xb+ax+ab=x^{2}+ax+xb+ab
Use the distributive property to multiply x+a by b.
x^{2}+xb+ax+ab-ax=x^{2}+xb+ab
Subtract ax from both sides.
x^{2}+xb+ab=x^{2}+xb+ab
Combine ax and -ax to get 0.
x^{2}+xb+ab-ab=x^{2}+xb
Subtract ab from both sides.
x^{2}+xb=x^{2}+xb
Combine ab and -ab to get 0.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
x^{2}+xb+ax+ab=\left(x+a\right)x+\left(x+a\right)b
Use the distributive property to multiply x+a by x+b.
x^{2}+xb+ax+ab=x^{2}+ax+\left(x+a\right)b
Use the distributive property to multiply x+a by x.
x^{2}+xb+ax+ab=x^{2}+ax+xb+ab
Use the distributive property to multiply x+a by b.
x^{2}+xb+ax+ab-xb=x^{2}+ax+ab
Subtract xb from both sides.
x^{2}+ax+ab=x^{2}+ax+ab
Combine xb and -xb to get 0.
x^{2}+ax+ab-ab=x^{2}+ax
Subtract ab from both sides.
x^{2}+ax=x^{2}+ax
Combine ab and -ab to get 0.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.