Solve for x
x = -\frac{11}{3} = -3\frac{2}{3} \approx -3.666666667
Graph
Share
Copied to clipboard
x^{2}-36-3x=x^{2}-25
Consider \left(x+6\right)\left(x-6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
x^{2}-36-3x-x^{2}=-25
Subtract x^{2} from both sides.
-36-3x=-25
Combine x^{2} and -x^{2} to get 0.
-3x=-25+36
Add 36 to both sides.
-3x=11
Add -25 and 36 to get 11.
x=\frac{11}{-3}
Divide both sides by -3.
x=-\frac{11}{3}
Fraction \frac{11}{-3} can be rewritten as -\frac{11}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}