Solve for x
x = -\frac{22}{7} = -3\frac{1}{7} \approx -3.142857143
Graph
Share
Copied to clipboard
x^{2}+x-30-\left(x-3\right)\left(2-x\right)=\left(2x-1\right)\left(x+2\right)
Use the distributive property to multiply x+6 by x-5 and combine like terms.
x^{2}+x-30-\left(5x-x^{2}-6\right)=\left(2x-1\right)\left(x+2\right)
Use the distributive property to multiply x-3 by 2-x and combine like terms.
x^{2}+x-30-5x+x^{2}+6=\left(2x-1\right)\left(x+2\right)
To find the opposite of 5x-x^{2}-6, find the opposite of each term.
x^{2}-4x-30+x^{2}+6=\left(2x-1\right)\left(x+2\right)
Combine x and -5x to get -4x.
2x^{2}-4x-30+6=\left(2x-1\right)\left(x+2\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-4x-24=\left(2x-1\right)\left(x+2\right)
Add -30 and 6 to get -24.
2x^{2}-4x-24=2x^{2}+3x-2
Use the distributive property to multiply 2x-1 by x+2 and combine like terms.
2x^{2}-4x-24-2x^{2}=3x-2
Subtract 2x^{2} from both sides.
-4x-24=3x-2
Combine 2x^{2} and -2x^{2} to get 0.
-4x-24-3x=-2
Subtract 3x from both sides.
-7x-24=-2
Combine -4x and -3x to get -7x.
-7x=-2+24
Add 24 to both sides.
-7x=22
Add -2 and 24 to get 22.
x=\frac{22}{-7}
Divide both sides by -7.
x=-\frac{22}{7}
Fraction \frac{22}{-7} can be rewritten as -\frac{22}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}