( x + 5 ) d y + y ^ { 2 } d x = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&\left(x=-\frac{5}{y+1}\text{ and }y\neq -1\right)\text{ or }y=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{5}{y+1}\text{, }&y\neq -1\\x\in \mathrm{C}\text{, }&y=0\text{ or }d=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(x=-\frac{5}{y+1}\text{ and }y\neq -1\right)\text{ or }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{5}{y+1}\text{, }&y\neq -1\\x\in \mathrm{R}\text{, }&y=0\text{ or }d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(xd+5d\right)y+y^{2}dx=0
Use the distributive property to multiply x+5 by d.
xdy+5dy+y^{2}dx=0
Use the distributive property to multiply xd+5d by y.
\left(xy+5y+y^{2}x\right)d=0
Combine all terms containing d.
\left(xy^{2}+xy+5y\right)d=0
The equation is in standard form.
d=0
Divide 0 by xy+5y+y^{2}x.
\left(xd+5d\right)y+y^{2}dx=0
Use the distributive property to multiply x+5 by d.
xdy+5dy+y^{2}dx=0
Use the distributive property to multiply xd+5d by y.
xdy+y^{2}dx=-5dy
Subtract 5dy from both sides. Anything subtracted from zero gives its negation.
\left(dy+y^{2}d\right)x=-5dy
Combine all terms containing x.
\left(dy^{2}+dy\right)x=-5dy
The equation is in standard form.
\frac{\left(dy^{2}+dy\right)x}{dy^{2}+dy}=-\frac{5dy}{dy^{2}+dy}
Divide both sides by dy+y^{2}d.
x=-\frac{5dy}{dy^{2}+dy}
Dividing by dy+y^{2}d undoes the multiplication by dy+y^{2}d.
x=-\frac{5}{y+1}
Divide -5dy by dy+y^{2}d.
\left(xd+5d\right)y+y^{2}dx=0
Use the distributive property to multiply x+5 by d.
xdy+5dy+y^{2}dx=0
Use the distributive property to multiply xd+5d by y.
\left(xy+5y+y^{2}x\right)d=0
Combine all terms containing d.
\left(xy^{2}+xy+5y\right)d=0
The equation is in standard form.
d=0
Divide 0 by xy+5y+y^{2}x.
\left(xd+5d\right)y+y^{2}dx=0
Use the distributive property to multiply x+5 by d.
xdy+5dy+y^{2}dx=0
Use the distributive property to multiply xd+5d by y.
xdy+y^{2}dx=-5dy
Subtract 5dy from both sides. Anything subtracted from zero gives its negation.
\left(dy+y^{2}d\right)x=-5dy
Combine all terms containing x.
\left(dy^{2}+dy\right)x=-5dy
The equation is in standard form.
\frac{\left(dy^{2}+dy\right)x}{dy^{2}+dy}=-\frac{5dy}{dy^{2}+dy}
Divide both sides by dy+y^{2}d.
x=-\frac{5dy}{dy^{2}+dy}
Dividing by dy+y^{2}d undoes the multiplication by dy+y^{2}d.
x=-\frac{5}{y+1}
Divide -5dy by dy+y^{2}d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}