Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+4x-5=2
Use the distributive property to multiply x+5 by x-1 and combine like terms.
x^{2}+4x-5-2=0
Subtract 2 from both sides.
x^{2}+4x-7=0
Subtract 2 from -5 to get -7.
x=\frac{-4±\sqrt{4^{2}-4\left(-7\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-7\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+28}}{2}
Multiply -4 times -7.
x=\frac{-4±\sqrt{44}}{2}
Add 16 to 28.
x=\frac{-4±2\sqrt{11}}{2}
Take the square root of 44.
x=\frac{2\sqrt{11}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{11}}{2} when ± is plus. Add -4 to 2\sqrt{11}.
x=\sqrt{11}-2
Divide -4+2\sqrt{11} by 2.
x=\frac{-2\sqrt{11}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{11}}{2} when ± is minus. Subtract 2\sqrt{11} from -4.
x=-\sqrt{11}-2
Divide -4-2\sqrt{11} by 2.
x=\sqrt{11}-2 x=-\sqrt{11}-2
The equation is now solved.
x^{2}+4x-5=2
Use the distributive property to multiply x+5 by x-1 and combine like terms.
x^{2}+4x=2+5
Add 5 to both sides.
x^{2}+4x=7
Add 2 and 5 to get 7.
x^{2}+4x+2^{2}=7+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=7+4
Square 2.
x^{2}+4x+4=11
Add 7 to 4.
\left(x+2\right)^{2}=11
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
x+2=\sqrt{11} x+2=-\sqrt{11}
Simplify.
x=\sqrt{11}-2 x=-\sqrt{11}-2
Subtract 2 from both sides of the equation.
x^{2}+4x-5=2
Use the distributive property to multiply x+5 by x-1 and combine like terms.
x^{2}+4x-5-2=0
Subtract 2 from both sides.
x^{2}+4x-7=0
Subtract 2 from -5 to get -7.
x=\frac{-4±\sqrt{4^{2}-4\left(-7\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-7\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+28}}{2}
Multiply -4 times -7.
x=\frac{-4±\sqrt{44}}{2}
Add 16 to 28.
x=\frac{-4±2\sqrt{11}}{2}
Take the square root of 44.
x=\frac{2\sqrt{11}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{11}}{2} when ± is plus. Add -4 to 2\sqrt{11}.
x=\sqrt{11}-2
Divide -4+2\sqrt{11} by 2.
x=\frac{-2\sqrt{11}-4}{2}
Now solve the equation x=\frac{-4±2\sqrt{11}}{2} when ± is minus. Subtract 2\sqrt{11} from -4.
x=-\sqrt{11}-2
Divide -4-2\sqrt{11} by 2.
x=\sqrt{11}-2 x=-\sqrt{11}-2
The equation is now solved.
x^{2}+4x-5=2
Use the distributive property to multiply x+5 by x-1 and combine like terms.
x^{2}+4x=2+5
Add 5 to both sides.
x^{2}+4x=7
Add 2 and 5 to get 7.
x^{2}+4x+2^{2}=7+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=7+4
Square 2.
x^{2}+4x+4=11
Add 7 to 4.
\left(x+2\right)^{2}=11
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
x+2=\sqrt{11} x+2=-\sqrt{11}
Simplify.
x=\sqrt{11}-2 x=-\sqrt{11}-2
Subtract 2 from both sides of the equation.