Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+\frac{2}{5}\right)\times \frac{90}{100}-x=390
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
\left(x+\frac{2}{5}\right)\times \frac{9}{10}-x=390
Reduce the fraction \frac{90}{100} to lowest terms by extracting and canceling out 10.
x\times \frac{9}{10}+\frac{2}{5}\times \frac{9}{10}-x=390
Use the distributive property to multiply x+\frac{2}{5} by \frac{9}{10}.
x\times \frac{9}{10}+\frac{2\times 9}{5\times 10}-x=390
Multiply \frac{2}{5} times \frac{9}{10} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{9}{10}+\frac{18}{50}-x=390
Do the multiplications in the fraction \frac{2\times 9}{5\times 10}.
x\times \frac{9}{10}+\frac{9}{25}-x=390
Reduce the fraction \frac{18}{50} to lowest terms by extracting and canceling out 2.
-\frac{1}{10}x+\frac{9}{25}=390
Combine x\times \frac{9}{10} and -x to get -\frac{1}{10}x.
-\frac{1}{10}x=390-\frac{9}{25}
Subtract \frac{9}{25} from both sides.
-\frac{1}{10}x=\frac{9750}{25}-\frac{9}{25}
Convert 390 to fraction \frac{9750}{25}.
-\frac{1}{10}x=\frac{9750-9}{25}
Since \frac{9750}{25} and \frac{9}{25} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{10}x=\frac{9741}{25}
Subtract 9 from 9750 to get 9741.
x=\frac{9741}{25}\left(-10\right)
Multiply both sides by -10, the reciprocal of -\frac{1}{10}.
x=\frac{9741\left(-10\right)}{25}
Express \frac{9741}{25}\left(-10\right) as a single fraction.
x=\frac{-97410}{25}
Multiply 9741 and -10 to get -97410.
x=-\frac{19482}{5}
Reduce the fraction \frac{-97410}{25} to lowest terms by extracting and canceling out 5.