Evaluate
\left(x-2\right)\left(x+4\right)\left(x+\left(-3-i\right)\right)\left(x+\left(-3+i\right)\right)
Expand
x^{4}-4x^{3}-10x^{2}+68x-80
Share
Copied to clipboard
\left(x^{2}-2x+4x-8\right)\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Apply the distributive property by multiplying each term of x+4 by each term of x-2.
\left(x^{2}+2x-8\right)\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Combine -2x and 4x to get 2x.
\left(x^{2}\left(x-\left(3-i\right)\right)+2x\left(x-\left(3-i\right)\right)-8\left(x-\left(3-i\right)\right)\right)\left(x-\left(3+i\right)\right)
Use the distributive property to multiply x^{2}+2x-8 by x-\left(3-i\right).
x^{2}\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Use the distributive property to multiply x^{2}\left(x-\left(3-i\right)\right)+2x\left(x-\left(3-i\right)\right)-8\left(x-\left(3-i\right)\right) by x-\left(3+i\right).
x^{2}\left(x+\left(-3+i\right)\right)\left(x-\left(3+i\right)\right)+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Multiply -1 and 3-i to get -3+i.
x^{2}\left(x+\left(-3+i\right)\right)\left(x+\left(-3-i\right)\right)+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Multiply -1 and 3+i to get -3-i.
\left(x^{3}+\left(-3+i\right)x^{2}\right)\left(x+\left(-3-i\right)\right)+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Use the distributive property to multiply x^{2} by x+\left(-3+i\right).
x^{4}+\left(-3-i\right)x^{3}+\left(-3+i\right)x^{3}+10x^{2}+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Apply the distributive property by multiplying each term of x^{3}+\left(-3+i\right)x^{2} by each term of x+\left(-3-i\right).
x^{4}-6x^{3}+10x^{2}+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Combine \left(-3-i\right)x^{3} and \left(-3+i\right)x^{3} to get -6x^{3}.
x^{4}-6x^{3}+10x^{2}+2x\left(x+\left(-3+i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Multiply -1 and 3-i to get -3+i.
x^{4}-6x^{3}+10x^{2}+2x\left(x+\left(-3+i\right)\right)\left(x+\left(-3-i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Multiply -1 and 3+i to get -3-i.
x^{4}-6x^{3}+10x^{2}+\left(2x^{2}+\left(-6+2i\right)x\right)\left(x+\left(-3-i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Use the distributive property to multiply 2x by x+\left(-3+i\right).
x^{4}-6x^{3}+10x^{2}+2x^{3}+\left(-6-2i\right)x^{2}+\left(-6+2i\right)x^{2}+20x-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Apply the distributive property by multiplying each term of 2x^{2}+\left(-6+2i\right)x by each term of x+\left(-3-i\right).
x^{4}-6x^{3}+10x^{2}+2x^{3}-12x^{2}+20x-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Combine \left(-6-2i\right)x^{2} and \left(-6+2i\right)x^{2} to get -12x^{2}.
x^{4}-4x^{3}+10x^{2}-12x^{2}+20x-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Combine -6x^{3} and 2x^{3} to get -4x^{3}.
x^{4}-4x^{3}-2x^{2}+20x-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Combine 10x^{2} and -12x^{2} to get -2x^{2}.
x^{4}-4x^{3}-2x^{2}+20x-8\left(x+\left(-3+i\right)\right)\left(x-\left(3+i\right)\right)
Multiply -1 and 3-i to get -3+i.
x^{4}-4x^{3}-2x^{2}+20x-8\left(x+\left(-3+i\right)\right)\left(x+\left(-3-i\right)\right)
Multiply -1 and 3+i to get -3-i.
x^{4}-4x^{3}-2x^{2}+20x+\left(-8x+\left(24-8i\right)\right)\left(x+\left(-3-i\right)\right)
Use the distributive property to multiply -8 by x+\left(-3+i\right).
x^{4}-4x^{3}-2x^{2}+20x-8x^{2}+\left(24+8i\right)x+\left(24-8i\right)x-80
Apply the distributive property by multiplying each term of -8x+\left(24-8i\right) by each term of x+\left(-3-i\right).
x^{4}-4x^{3}-2x^{2}+20x-8x^{2}+48x-80
Combine \left(24+8i\right)x and \left(24-8i\right)x to get 48x.
x^{4}-4x^{3}-10x^{2}+20x+48x-80
Combine -2x^{2} and -8x^{2} to get -10x^{2}.
x^{4}-4x^{3}-10x^{2}+68x-80
Combine 20x and 48x to get 68x.
\left(x^{2}-2x+4x-8\right)\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Apply the distributive property by multiplying each term of x+4 by each term of x-2.
\left(x^{2}+2x-8\right)\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Combine -2x and 4x to get 2x.
\left(x^{2}\left(x-\left(3-i\right)\right)+2x\left(x-\left(3-i\right)\right)-8\left(x-\left(3-i\right)\right)\right)\left(x-\left(3+i\right)\right)
Use the distributive property to multiply x^{2}+2x-8 by x-\left(3-i\right).
x^{2}\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Use the distributive property to multiply x^{2}\left(x-\left(3-i\right)\right)+2x\left(x-\left(3-i\right)\right)-8\left(x-\left(3-i\right)\right) by x-\left(3+i\right).
x^{2}\left(x+\left(-3+i\right)\right)\left(x-\left(3+i\right)\right)+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Multiply -1 and 3-i to get -3+i.
x^{2}\left(x+\left(-3+i\right)\right)\left(x+\left(-3-i\right)\right)+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Multiply -1 and 3+i to get -3-i.
\left(x^{3}+\left(-3+i\right)x^{2}\right)\left(x+\left(-3-i\right)\right)+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Use the distributive property to multiply x^{2} by x+\left(-3+i\right).
x^{4}+\left(-3-i\right)x^{3}+\left(-3+i\right)x^{3}+10x^{2}+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Apply the distributive property by multiplying each term of x^{3}+\left(-3+i\right)x^{2} by each term of x+\left(-3-i\right).
x^{4}-6x^{3}+10x^{2}+2x\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Combine \left(-3-i\right)x^{3} and \left(-3+i\right)x^{3} to get -6x^{3}.
x^{4}-6x^{3}+10x^{2}+2x\left(x+\left(-3+i\right)\right)\left(x-\left(3+i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Multiply -1 and 3-i to get -3+i.
x^{4}-6x^{3}+10x^{2}+2x\left(x+\left(-3+i\right)\right)\left(x+\left(-3-i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Multiply -1 and 3+i to get -3-i.
x^{4}-6x^{3}+10x^{2}+\left(2x^{2}+\left(-6+2i\right)x\right)\left(x+\left(-3-i\right)\right)-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Use the distributive property to multiply 2x by x+\left(-3+i\right).
x^{4}-6x^{3}+10x^{2}+2x^{3}+\left(-6-2i\right)x^{2}+\left(-6+2i\right)x^{2}+20x-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Apply the distributive property by multiplying each term of 2x^{2}+\left(-6+2i\right)x by each term of x+\left(-3-i\right).
x^{4}-6x^{3}+10x^{2}+2x^{3}-12x^{2}+20x-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Combine \left(-6-2i\right)x^{2} and \left(-6+2i\right)x^{2} to get -12x^{2}.
x^{4}-4x^{3}+10x^{2}-12x^{2}+20x-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Combine -6x^{3} and 2x^{3} to get -4x^{3}.
x^{4}-4x^{3}-2x^{2}+20x-8\left(x-\left(3-i\right)\right)\left(x-\left(3+i\right)\right)
Combine 10x^{2} and -12x^{2} to get -2x^{2}.
x^{4}-4x^{3}-2x^{2}+20x-8\left(x+\left(-3+i\right)\right)\left(x-\left(3+i\right)\right)
Multiply -1 and 3-i to get -3+i.
x^{4}-4x^{3}-2x^{2}+20x-8\left(x+\left(-3+i\right)\right)\left(x+\left(-3-i\right)\right)
Multiply -1 and 3+i to get -3-i.
x^{4}-4x^{3}-2x^{2}+20x+\left(-8x+\left(24-8i\right)\right)\left(x+\left(-3-i\right)\right)
Use the distributive property to multiply -8 by x+\left(-3+i\right).
x^{4}-4x^{3}-2x^{2}+20x-8x^{2}+\left(24+8i\right)x+\left(24-8i\right)x-80
Apply the distributive property by multiplying each term of -8x+\left(24-8i\right) by each term of x+\left(-3-i\right).
x^{4}-4x^{3}-2x^{2}+20x-8x^{2}+48x-80
Combine \left(24+8i\right)x and \left(24-8i\right)x to get 48x.
x^{4}-4x^{3}-10x^{2}+20x+48x-80
Combine -2x^{2} and -8x^{2} to get -10x^{2}.
x^{4}-4x^{3}-10x^{2}+68x-80
Combine 20x and 48x to get 68x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}