Solve for x
x=-2
x=-6
Graph
Share
Copied to clipboard
x^{2}+8x+16=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16-4=0
Subtract 4 from both sides.
x^{2}+8x+12=0
Subtract 4 from 16 to get 12.
a+b=8 ab=12
To solve the equation, factor x^{2}+8x+12 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=2 b=6
The solution is the pair that gives sum 8.
\left(x+2\right)\left(x+6\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=-2 x=-6
To find equation solutions, solve x+2=0 and x+6=0.
x^{2}+8x+16=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16-4=0
Subtract 4 from both sides.
x^{2}+8x+12=0
Subtract 4 from 16 to get 12.
a+b=8 ab=1\times 12=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=2 b=6
The solution is the pair that gives sum 8.
\left(x^{2}+2x\right)+\left(6x+12\right)
Rewrite x^{2}+8x+12 as \left(x^{2}+2x\right)+\left(6x+12\right).
x\left(x+2\right)+6\left(x+2\right)
Factor out x in the first and 6 in the second group.
\left(x+2\right)\left(x+6\right)
Factor out common term x+2 by using distributive property.
x=-2 x=-6
To find equation solutions, solve x+2=0 and x+6=0.
x^{2}+8x+16=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+8x+16-4=0
Subtract 4 from both sides.
x^{2}+8x+12=0
Subtract 4 from 16 to get 12.
x=\frac{-8±\sqrt{8^{2}-4\times 12}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 12}}{2}
Square 8.
x=\frac{-8±\sqrt{64-48}}{2}
Multiply -4 times 12.
x=\frac{-8±\sqrt{16}}{2}
Add 64 to -48.
x=\frac{-8±4}{2}
Take the square root of 16.
x=-\frac{4}{2}
Now solve the equation x=\frac{-8±4}{2} when ± is plus. Add -8 to 4.
x=-2
Divide -4 by 2.
x=-\frac{12}{2}
Now solve the equation x=\frac{-8±4}{2} when ± is minus. Subtract 4 from -8.
x=-6
Divide -12 by 2.
x=-2 x=-6
The equation is now solved.
\sqrt{\left(x+4\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x+4=2 x+4=-2
Simplify.
x=-2 x=-6
Subtract 4 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}