Solve for x
x = -\frac{9}{8} = -1\frac{1}{8} = -1.125
Graph
Share
Copied to clipboard
x^{2}+6x+9=x\left(x-2\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9=x^{2}-2x
Use the distributive property to multiply x by x-2.
x^{2}+6x+9-x^{2}=-2x
Subtract x^{2} from both sides.
6x+9=-2x
Combine x^{2} and -x^{2} to get 0.
6x+9+2x=0
Add 2x to both sides.
8x+9=0
Combine 6x and 2x to get 8x.
8x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-9}{8}
Divide both sides by 8.
x=-\frac{9}{8}
Fraction \frac{-9}{8} can be rewritten as -\frac{9}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}