Solve for x
x=9
x=1
Graph
Share
Copied to clipboard
x^{2}+6x+9=4\left(x-3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9=4\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}+6x+9=4x^{2}-24x+36
Use the distributive property to multiply 4 by x^{2}-6x+9.
x^{2}+6x+9-4x^{2}=-24x+36
Subtract 4x^{2} from both sides.
-3x^{2}+6x+9=-24x+36
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+6x+9+24x=36
Add 24x to both sides.
-3x^{2}+30x+9=36
Combine 6x and 24x to get 30x.
-3x^{2}+30x+9-36=0
Subtract 36 from both sides.
-3x^{2}+30x-27=0
Subtract 36 from 9 to get -27.
-x^{2}+10x-9=0
Divide both sides by 3.
a+b=10 ab=-\left(-9\right)=9
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
1,9 3,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 9.
1+9=10 3+3=6
Calculate the sum for each pair.
a=9 b=1
The solution is the pair that gives sum 10.
\left(-x^{2}+9x\right)+\left(x-9\right)
Rewrite -x^{2}+10x-9 as \left(-x^{2}+9x\right)+\left(x-9\right).
-x\left(x-9\right)+x-9
Factor out -x in -x^{2}+9x.
\left(x-9\right)\left(-x+1\right)
Factor out common term x-9 by using distributive property.
x=9 x=1
To find equation solutions, solve x-9=0 and -x+1=0.
x^{2}+6x+9=4\left(x-3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9=4\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}+6x+9=4x^{2}-24x+36
Use the distributive property to multiply 4 by x^{2}-6x+9.
x^{2}+6x+9-4x^{2}=-24x+36
Subtract 4x^{2} from both sides.
-3x^{2}+6x+9=-24x+36
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+6x+9+24x=36
Add 24x to both sides.
-3x^{2}+30x+9=36
Combine 6x and 24x to get 30x.
-3x^{2}+30x+9-36=0
Subtract 36 from both sides.
-3x^{2}+30x-27=0
Subtract 36 from 9 to get -27.
x=\frac{-30±\sqrt{30^{2}-4\left(-3\right)\left(-27\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 30 for b, and -27 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-3\right)\left(-27\right)}}{2\left(-3\right)}
Square 30.
x=\frac{-30±\sqrt{900+12\left(-27\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-30±\sqrt{900-324}}{2\left(-3\right)}
Multiply 12 times -27.
x=\frac{-30±\sqrt{576}}{2\left(-3\right)}
Add 900 to -324.
x=\frac{-30±24}{2\left(-3\right)}
Take the square root of 576.
x=\frac{-30±24}{-6}
Multiply 2 times -3.
x=-\frac{6}{-6}
Now solve the equation x=\frac{-30±24}{-6} when ± is plus. Add -30 to 24.
x=1
Divide -6 by -6.
x=-\frac{54}{-6}
Now solve the equation x=\frac{-30±24}{-6} when ± is minus. Subtract 24 from -30.
x=9
Divide -54 by -6.
x=1 x=9
The equation is now solved.
x^{2}+6x+9=4\left(x-3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9=4\left(x^{2}-6x+9\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x^{2}+6x+9=4x^{2}-24x+36
Use the distributive property to multiply 4 by x^{2}-6x+9.
x^{2}+6x+9-4x^{2}=-24x+36
Subtract 4x^{2} from both sides.
-3x^{2}+6x+9=-24x+36
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+6x+9+24x=36
Add 24x to both sides.
-3x^{2}+30x+9=36
Combine 6x and 24x to get 30x.
-3x^{2}+30x=36-9
Subtract 9 from both sides.
-3x^{2}+30x=27
Subtract 9 from 36 to get 27.
\frac{-3x^{2}+30x}{-3}=\frac{27}{-3}
Divide both sides by -3.
x^{2}+\frac{30}{-3}x=\frac{27}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-10x=\frac{27}{-3}
Divide 30 by -3.
x^{2}-10x=-9
Divide 27 by -3.
x^{2}-10x+\left(-5\right)^{2}=-9+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-9+25
Square -5.
x^{2}-10x+25=16
Add -9 to 25.
\left(x-5\right)^{2}=16
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-5=4 x-5=-4
Simplify.
x=9 x=1
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}