Solve for x
x=4
x=-\frac{2}{3}\approx -0.666666667
Graph
Share
Copied to clipboard
x^{2}+6x+9=\left(1-2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9=1-4x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-2x\right)^{2}.
x^{2}+6x+9-1=-4x+4x^{2}
Subtract 1 from both sides.
x^{2}+6x+8=-4x+4x^{2}
Subtract 1 from 9 to get 8.
x^{2}+6x+8+4x=4x^{2}
Add 4x to both sides.
x^{2}+10x+8=4x^{2}
Combine 6x and 4x to get 10x.
x^{2}+10x+8-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+10x+8=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
a+b=10 ab=-3\times 8=-24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+8. To find a and b, set up a system to be solved.
-1,24 -2,12 -3,8 -4,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calculate the sum for each pair.
a=12 b=-2
The solution is the pair that gives sum 10.
\left(-3x^{2}+12x\right)+\left(-2x+8\right)
Rewrite -3x^{2}+10x+8 as \left(-3x^{2}+12x\right)+\left(-2x+8\right).
3x\left(-x+4\right)+2\left(-x+4\right)
Factor out 3x in the first and 2 in the second group.
\left(-x+4\right)\left(3x+2\right)
Factor out common term -x+4 by using distributive property.
x=4 x=-\frac{2}{3}
To find equation solutions, solve -x+4=0 and 3x+2=0.
x^{2}+6x+9=\left(1-2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9=1-4x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-2x\right)^{2}.
x^{2}+6x+9-1=-4x+4x^{2}
Subtract 1 from both sides.
x^{2}+6x+8=-4x+4x^{2}
Subtract 1 from 9 to get 8.
x^{2}+6x+8+4x=4x^{2}
Add 4x to both sides.
x^{2}+10x+8=4x^{2}
Combine 6x and 4x to get 10x.
x^{2}+10x+8-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+10x+8=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{-10±\sqrt{10^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 10 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-3\right)\times 8}}{2\left(-3\right)}
Square 10.
x=\frac{-10±\sqrt{100+12\times 8}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-10±\sqrt{100+96}}{2\left(-3\right)}
Multiply 12 times 8.
x=\frac{-10±\sqrt{196}}{2\left(-3\right)}
Add 100 to 96.
x=\frac{-10±14}{2\left(-3\right)}
Take the square root of 196.
x=\frac{-10±14}{-6}
Multiply 2 times -3.
x=\frac{4}{-6}
Now solve the equation x=\frac{-10±14}{-6} when ± is plus. Add -10 to 14.
x=-\frac{2}{3}
Reduce the fraction \frac{4}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{24}{-6}
Now solve the equation x=\frac{-10±14}{-6} when ± is minus. Subtract 14 from -10.
x=4
Divide -24 by -6.
x=-\frac{2}{3} x=4
The equation is now solved.
x^{2}+6x+9=\left(1-2x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9=1-4x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-2x\right)^{2}.
x^{2}+6x+9+4x=1+4x^{2}
Add 4x to both sides.
x^{2}+10x+9=1+4x^{2}
Combine 6x and 4x to get 10x.
x^{2}+10x+9-4x^{2}=1
Subtract 4x^{2} from both sides.
-3x^{2}+10x+9=1
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+10x=1-9
Subtract 9 from both sides.
-3x^{2}+10x=-8
Subtract 9 from 1 to get -8.
\frac{-3x^{2}+10x}{-3}=-\frac{8}{-3}
Divide both sides by -3.
x^{2}+\frac{10}{-3}x=-\frac{8}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{10}{3}x=-\frac{8}{-3}
Divide 10 by -3.
x^{2}-\frac{10}{3}x=\frac{8}{3}
Divide -8 by -3.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{49}{9}
Add \frac{8}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{3}\right)^{2}=\frac{49}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{7}{3} x-\frac{5}{3}=-\frac{7}{3}
Simplify.
x=4 x=-\frac{2}{3}
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}