Solve for x
x=-3
x = \frac{24}{7} = 3\frac{3}{7} \approx 3.428571429
Graph
Share
Copied to clipboard
x^{2}+6x+9+\left(3x-8\right)\left(3x+8\right)+1=3\left(x\left(x+3\right)+6\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+\left(3x\right)^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Consider \left(3x-8\right)\left(3x+8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 8.
x^{2}+6x+9+3^{2}x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Expand \left(3x\right)^{2}.
x^{2}+6x+9+9x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Calculate 3 to the power of 2 and get 9.
10x^{2}+6x+9-64+1=3\left(x\left(x+3\right)+6\right)
Combine x^{2} and 9x^{2} to get 10x^{2}.
10x^{2}+6x-55+1=3\left(x\left(x+3\right)+6\right)
Subtract 64 from 9 to get -55.
10x^{2}+6x-54=3\left(x\left(x+3\right)+6\right)
Add -55 and 1 to get -54.
10x^{2}+6x-54=3\left(x^{2}+3x+6\right)
Use the distributive property to multiply x by x+3.
10x^{2}+6x-54=3x^{2}+9x+18
Use the distributive property to multiply 3 by x^{2}+3x+6.
10x^{2}+6x-54-3x^{2}=9x+18
Subtract 3x^{2} from both sides.
7x^{2}+6x-54=9x+18
Combine 10x^{2} and -3x^{2} to get 7x^{2}.
7x^{2}+6x-54-9x=18
Subtract 9x from both sides.
7x^{2}-3x-54=18
Combine 6x and -9x to get -3x.
7x^{2}-3x-54-18=0
Subtract 18 from both sides.
7x^{2}-3x-72=0
Subtract 18 from -54 to get -72.
a+b=-3 ab=7\left(-72\right)=-504
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 7x^{2}+ax+bx-72. To find a and b, set up a system to be solved.
1,-504 2,-252 3,-168 4,-126 6,-84 7,-72 8,-63 9,-56 12,-42 14,-36 18,-28 21,-24
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -504.
1-504=-503 2-252=-250 3-168=-165 4-126=-122 6-84=-78 7-72=-65 8-63=-55 9-56=-47 12-42=-30 14-36=-22 18-28=-10 21-24=-3
Calculate the sum for each pair.
a=-24 b=21
The solution is the pair that gives sum -3.
\left(7x^{2}-24x\right)+\left(21x-72\right)
Rewrite 7x^{2}-3x-72 as \left(7x^{2}-24x\right)+\left(21x-72\right).
x\left(7x-24\right)+3\left(7x-24\right)
Factor out x in the first and 3 in the second group.
\left(7x-24\right)\left(x+3\right)
Factor out common term 7x-24 by using distributive property.
x=\frac{24}{7} x=-3
To find equation solutions, solve 7x-24=0 and x+3=0.
x^{2}+6x+9+\left(3x-8\right)\left(3x+8\right)+1=3\left(x\left(x+3\right)+6\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+\left(3x\right)^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Consider \left(3x-8\right)\left(3x+8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 8.
x^{2}+6x+9+3^{2}x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Expand \left(3x\right)^{2}.
x^{2}+6x+9+9x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Calculate 3 to the power of 2 and get 9.
10x^{2}+6x+9-64+1=3\left(x\left(x+3\right)+6\right)
Combine x^{2} and 9x^{2} to get 10x^{2}.
10x^{2}+6x-55+1=3\left(x\left(x+3\right)+6\right)
Subtract 64 from 9 to get -55.
10x^{2}+6x-54=3\left(x\left(x+3\right)+6\right)
Add -55 and 1 to get -54.
10x^{2}+6x-54=3\left(x^{2}+3x+6\right)
Use the distributive property to multiply x by x+3.
10x^{2}+6x-54=3x^{2}+9x+18
Use the distributive property to multiply 3 by x^{2}+3x+6.
10x^{2}+6x-54-3x^{2}=9x+18
Subtract 3x^{2} from both sides.
7x^{2}+6x-54=9x+18
Combine 10x^{2} and -3x^{2} to get 7x^{2}.
7x^{2}+6x-54-9x=18
Subtract 9x from both sides.
7x^{2}-3x-54=18
Combine 6x and -9x to get -3x.
7x^{2}-3x-54-18=0
Subtract 18 from both sides.
7x^{2}-3x-72=0
Subtract 18 from -54 to get -72.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 7\left(-72\right)}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -3 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 7\left(-72\right)}}{2\times 7}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-28\left(-72\right)}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-3\right)±\sqrt{9+2016}}{2\times 7}
Multiply -28 times -72.
x=\frac{-\left(-3\right)±\sqrt{2025}}{2\times 7}
Add 9 to 2016.
x=\frac{-\left(-3\right)±45}{2\times 7}
Take the square root of 2025.
x=\frac{3±45}{2\times 7}
The opposite of -3 is 3.
x=\frac{3±45}{14}
Multiply 2 times 7.
x=\frac{48}{14}
Now solve the equation x=\frac{3±45}{14} when ± is plus. Add 3 to 45.
x=\frac{24}{7}
Reduce the fraction \frac{48}{14} to lowest terms by extracting and canceling out 2.
x=-\frac{42}{14}
Now solve the equation x=\frac{3±45}{14} when ± is minus. Subtract 45 from 3.
x=-3
Divide -42 by 14.
x=\frac{24}{7} x=-3
The equation is now solved.
x^{2}+6x+9+\left(3x-8\right)\left(3x+8\right)+1=3\left(x\left(x+3\right)+6\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9+\left(3x\right)^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Consider \left(3x-8\right)\left(3x+8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 8.
x^{2}+6x+9+3^{2}x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Expand \left(3x\right)^{2}.
x^{2}+6x+9+9x^{2}-64+1=3\left(x\left(x+3\right)+6\right)
Calculate 3 to the power of 2 and get 9.
10x^{2}+6x+9-64+1=3\left(x\left(x+3\right)+6\right)
Combine x^{2} and 9x^{2} to get 10x^{2}.
10x^{2}+6x-55+1=3\left(x\left(x+3\right)+6\right)
Subtract 64 from 9 to get -55.
10x^{2}+6x-54=3\left(x\left(x+3\right)+6\right)
Add -55 and 1 to get -54.
10x^{2}+6x-54=3\left(x^{2}+3x+6\right)
Use the distributive property to multiply x by x+3.
10x^{2}+6x-54=3x^{2}+9x+18
Use the distributive property to multiply 3 by x^{2}+3x+6.
10x^{2}+6x-54-3x^{2}=9x+18
Subtract 3x^{2} from both sides.
7x^{2}+6x-54=9x+18
Combine 10x^{2} and -3x^{2} to get 7x^{2}.
7x^{2}+6x-54-9x=18
Subtract 9x from both sides.
7x^{2}-3x-54=18
Combine 6x and -9x to get -3x.
7x^{2}-3x=18+54
Add 54 to both sides.
7x^{2}-3x=72
Add 18 and 54 to get 72.
\frac{7x^{2}-3x}{7}=\frac{72}{7}
Divide both sides by 7.
x^{2}-\frac{3}{7}x=\frac{72}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{3}{7}x+\left(-\frac{3}{14}\right)^{2}=\frac{72}{7}+\left(-\frac{3}{14}\right)^{2}
Divide -\frac{3}{7}, the coefficient of the x term, by 2 to get -\frac{3}{14}. Then add the square of -\frac{3}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{72}{7}+\frac{9}{196}
Square -\frac{3}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{7}x+\frac{9}{196}=\frac{2025}{196}
Add \frac{72}{7} to \frac{9}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{14}\right)^{2}=\frac{2025}{196}
Factor x^{2}-\frac{3}{7}x+\frac{9}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{14}\right)^{2}}=\sqrt{\frac{2025}{196}}
Take the square root of both sides of the equation.
x-\frac{3}{14}=\frac{45}{14} x-\frac{3}{14}=-\frac{45}{14}
Simplify.
x=\frac{24}{7} x=-3
Add \frac{3}{14} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}