( x + 2 ) ^ { 2 } - 90 = 5 ( 0,5 x - 17 )
Solve for x
x=-2
x=0,5
Graph
Share
Copied to clipboard
x^{2}+4x+4-90=5\left(0,5x-17\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x-86=5\left(0,5x-17\right)
Subtract 90 from 4 to get -86.
x^{2}+4x-86=2,5x-85
Use the distributive property to multiply 5 by 0,5x-17.
x^{2}+4x-86-2,5x=-85
Subtract 2,5x from both sides.
x^{2}+1,5x-86=-85
Combine 4x and -2,5x to get 1,5x.
x^{2}+1,5x-86+85=0
Add 85 to both sides.
x^{2}+1,5x-1=0
Add -86 and 85 to get -1.
x=\frac{-1,5±\sqrt{1,5^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1,5 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1,5±\sqrt{2,25-4\left(-1\right)}}{2}
Square 1,5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-1,5±\sqrt{2,25+4}}{2}
Multiply -4 times -1.
x=\frac{-1,5±\sqrt{6,25}}{2}
Add 2,25 to 4.
x=\frac{-1,5±\frac{5}{2}}{2}
Take the square root of 6,25.
x=\frac{1}{2}
Now solve the equation x=\frac{-1,5±\frac{5}{2}}{2} when ± is plus. Add -1,5 to \frac{5}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{4}{2}
Now solve the equation x=\frac{-1,5±\frac{5}{2}}{2} when ± is minus. Subtract \frac{5}{2} from -1,5 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-2
Divide -4 by 2.
x=\frac{1}{2} x=-2
The equation is now solved.
x^{2}+4x+4-90=5\left(0,5x-17\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x-86=5\left(0,5x-17\right)
Subtract 90 from 4 to get -86.
x^{2}+4x-86=2,5x-85
Use the distributive property to multiply 5 by 0,5x-17.
x^{2}+4x-86-2,5x=-85
Subtract 2,5x from both sides.
x^{2}+1,5x-86=-85
Combine 4x and -2,5x to get 1,5x.
x^{2}+1,5x=-85+86
Add 86 to both sides.
x^{2}+1,5x=1
Add -85 and 86 to get 1.
x^{2}+1,5x+0,75^{2}=1+0,75^{2}
Divide 1,5, the coefficient of the x term, by 2 to get 0,75. Then add the square of 0,75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+1,5x+0,5625=1+0,5625
Square 0,75 by squaring both the numerator and the denominator of the fraction.
x^{2}+1,5x+0,5625=1,5625
Add 1 to 0,5625.
\left(x+0,75\right)^{2}=1,5625
Factor x^{2}+1,5x+0,5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0,75\right)^{2}}=\sqrt{1,5625}
Take the square root of both sides of the equation.
x+0,75=\frac{5}{4} x+0,75=-\frac{5}{4}
Simplify.
x=\frac{1}{2} x=-2
Subtract 0,75 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}