Solve for x
x<\frac{1}{6}
Graph
Share
Copied to clipboard
x^{2}+4x+4+3\left(x+1\right)^{2}<\left(2x+1\right)^{2}+7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4+3\left(x^{2}+2x+1\right)<\left(2x+1\right)^{2}+7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+4x+4+3x^{2}+6x+3<\left(2x+1\right)^{2}+7
Use the distributive property to multiply 3 by x^{2}+2x+1.
4x^{2}+4x+4+6x+3<\left(2x+1\right)^{2}+7
Combine x^{2} and 3x^{2} to get 4x^{2}.
4x^{2}+10x+4+3<\left(2x+1\right)^{2}+7
Combine 4x and 6x to get 10x.
4x^{2}+10x+7<\left(2x+1\right)^{2}+7
Add 4 and 3 to get 7.
4x^{2}+10x+7<4x^{2}+4x+1+7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+10x+7<4x^{2}+4x+8
Add 1 and 7 to get 8.
4x^{2}+10x+7-4x^{2}<4x+8
Subtract 4x^{2} from both sides.
10x+7<4x+8
Combine 4x^{2} and -4x^{2} to get 0.
10x+7-4x<8
Subtract 4x from both sides.
6x+7<8
Combine 10x and -4x to get 6x.
6x<8-7
Subtract 7 from both sides.
6x<1
Subtract 7 from 8 to get 1.
x<\frac{1}{6}
Divide both sides by 6. Since 6 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}