Solve for x
x = \frac{\sqrt{34}}{2} \approx 2.915475947
x = -\frac{\sqrt{34}}{2} \approx -2.915475947
Graph
Share
Copied to clipboard
\frac{2}{3}x^{2}-\frac{2}{3}=\left(x+4\right)\left(\frac{8}{3}-\frac{2}{3}x\right)
Use the distributive property to multiply x+1 by \frac{2}{3}x-\frac{2}{3} and combine like terms.
\frac{2}{3}x^{2}-\frac{2}{3}=-\frac{2}{3}x^{2}+\frac{32}{3}
Use the distributive property to multiply x+4 by \frac{8}{3}-\frac{2}{3}x and combine like terms.
\frac{2}{3}x^{2}-\frac{2}{3}+\frac{2}{3}x^{2}=\frac{32}{3}
Add \frac{2}{3}x^{2} to both sides.
\frac{4}{3}x^{2}-\frac{2}{3}=\frac{32}{3}
Combine \frac{2}{3}x^{2} and \frac{2}{3}x^{2} to get \frac{4}{3}x^{2}.
\frac{4}{3}x^{2}=\frac{32}{3}+\frac{2}{3}
Add \frac{2}{3} to both sides.
\frac{4}{3}x^{2}=\frac{34}{3}
Add \frac{32}{3} and \frac{2}{3} to get \frac{34}{3}.
x^{2}=\frac{34}{3}\times \frac{3}{4}
Multiply both sides by \frac{3}{4}, the reciprocal of \frac{4}{3}.
x^{2}=\frac{17}{2}
Multiply \frac{34}{3} and \frac{3}{4} to get \frac{17}{2}.
x=\frac{\sqrt{34}}{2} x=-\frac{\sqrt{34}}{2}
Take the square root of both sides of the equation.
\frac{2}{3}x^{2}-\frac{2}{3}=\left(x+4\right)\left(\frac{8}{3}-\frac{2}{3}x\right)
Use the distributive property to multiply x+1 by \frac{2}{3}x-\frac{2}{3} and combine like terms.
\frac{2}{3}x^{2}-\frac{2}{3}=-\frac{2}{3}x^{2}+\frac{32}{3}
Use the distributive property to multiply x+4 by \frac{8}{3}-\frac{2}{3}x and combine like terms.
\frac{2}{3}x^{2}-\frac{2}{3}+\frac{2}{3}x^{2}=\frac{32}{3}
Add \frac{2}{3}x^{2} to both sides.
\frac{4}{3}x^{2}-\frac{2}{3}=\frac{32}{3}
Combine \frac{2}{3}x^{2} and \frac{2}{3}x^{2} to get \frac{4}{3}x^{2}.
\frac{4}{3}x^{2}-\frac{2}{3}-\frac{32}{3}=0
Subtract \frac{32}{3} from both sides.
\frac{4}{3}x^{2}-\frac{34}{3}=0
Subtract \frac{32}{3} from -\frac{2}{3} to get -\frac{34}{3}.
x=\frac{0±\sqrt{0^{2}-4\times \frac{4}{3}\left(-\frac{34}{3}\right)}}{2\times \frac{4}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{4}{3} for a, 0 for b, and -\frac{34}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{4}{3}\left(-\frac{34}{3}\right)}}{2\times \frac{4}{3}}
Square 0.
x=\frac{0±\sqrt{-\frac{16}{3}\left(-\frac{34}{3}\right)}}{2\times \frac{4}{3}}
Multiply -4 times \frac{4}{3}.
x=\frac{0±\sqrt{\frac{544}{9}}}{2\times \frac{4}{3}}
Multiply -\frac{16}{3} times -\frac{34}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{4\sqrt{34}}{3}}{2\times \frac{4}{3}}
Take the square root of \frac{544}{9}.
x=\frac{0±\frac{4\sqrt{34}}{3}}{\frac{8}{3}}
Multiply 2 times \frac{4}{3}.
x=\frac{\sqrt{34}}{2}
Now solve the equation x=\frac{0±\frac{4\sqrt{34}}{3}}{\frac{8}{3}} when ± is plus.
x=-\frac{\sqrt{34}}{2}
Now solve the equation x=\frac{0±\frac{4\sqrt{34}}{3}}{\frac{8}{3}} when ± is minus.
x=\frac{\sqrt{34}}{2} x=-\frac{\sqrt{34}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}