Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2x+1+\left(x+4\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+x^{2}+8x+16=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
2x^{2}+2x+1+8x+16=4
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+10x+1+16=4
Combine 2x and 8x to get 10x.
2x^{2}+10x+17=4
Add 1 and 16 to get 17.
2x^{2}+10x+17-4=0
Subtract 4 from both sides.
2x^{2}+10x+13=0
Subtract 4 from 17 to get 13.
x=\frac{-10±\sqrt{10^{2}-4\times 2\times 13}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 10 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 2\times 13}}{2\times 2}
Square 10.
x=\frac{-10±\sqrt{100-8\times 13}}{2\times 2}
Multiply -4 times 2.
x=\frac{-10±\sqrt{100-104}}{2\times 2}
Multiply -8 times 13.
x=\frac{-10±\sqrt{-4}}{2\times 2}
Add 100 to -104.
x=\frac{-10±2i}{2\times 2}
Take the square root of -4.
x=\frac{-10±2i}{4}
Multiply 2 times 2.
x=\frac{-10+2i}{4}
Now solve the equation x=\frac{-10±2i}{4} when ± is plus. Add -10 to 2i.
x=-\frac{5}{2}+\frac{1}{2}i
Divide -10+2i by 4.
x=\frac{-10-2i}{4}
Now solve the equation x=\frac{-10±2i}{4} when ± is minus. Subtract 2i from -10.
x=-\frac{5}{2}-\frac{1}{2}i
Divide -10-2i by 4.
x=-\frac{5}{2}+\frac{1}{2}i x=-\frac{5}{2}-\frac{1}{2}i
The equation is now solved.
x^{2}+2x+1+\left(x+4\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+x^{2}+8x+16=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
2x^{2}+2x+1+8x+16=4
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+10x+1+16=4
Combine 2x and 8x to get 10x.
2x^{2}+10x+17=4
Add 1 and 16 to get 17.
2x^{2}+10x=4-17
Subtract 17 from both sides.
2x^{2}+10x=-13
Subtract 17 from 4 to get -13.
\frac{2x^{2}+10x}{2}=-\frac{13}{2}
Divide both sides by 2.
x^{2}+\frac{10}{2}x=-\frac{13}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+5x=-\frac{13}{2}
Divide 10 by 2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-\frac{13}{2}+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-\frac{13}{2}+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=-\frac{1}{4}
Add -\frac{13}{2} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{2}\right)^{2}=-\frac{1}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{1}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{1}{2}i x+\frac{5}{2}=-\frac{1}{2}i
Simplify.
x=-\frac{5}{2}+\frac{1}{2}i x=-\frac{5}{2}-\frac{1}{2}i
Subtract \frac{5}{2} from both sides of the equation.