Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2x+1+\left(\frac{x^{2}}{4}-\frac{1}{2}\right)^{2}=\frac{5}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+\left(\frac{x^{2}}{4}-\frac{2}{4}\right)^{2}=\frac{5}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{1}{2} times \frac{2}{2}.
x^{2}+2x+1+\left(\frac{x^{2}-2}{4}\right)^{2}=\frac{5}{4}
Since \frac{x^{2}}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
x^{2}+2x+1+\frac{\left(x^{2}-2\right)^{2}}{4^{2}}=\frac{5}{4}
To raise \frac{x^{2}-2}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}+2x+1\right)\times 4^{2}}{4^{2}}+\frac{\left(x^{2}-2\right)^{2}}{4^{2}}=\frac{5}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+2x+1 times \frac{4^{2}}{4^{2}}.
\frac{\left(x^{2}+2x+1\right)\times 4^{2}+\left(x^{2}-2\right)^{2}}{4^{2}}=\frac{5}{4}
Since \frac{\left(x^{2}+2x+1\right)\times 4^{2}}{4^{2}} and \frac{\left(x^{2}-2\right)^{2}}{4^{2}} have the same denominator, add them by adding their numerators.
\frac{16x^{2}+32x+16+x^{4}-4x^{2}+4}{4^{2}}=\frac{5}{4}
Do the multiplications in \left(x^{2}+2x+1\right)\times 4^{2}+\left(x^{2}-2\right)^{2}.
\frac{12x^{2}+32x+20+x^{4}}{4^{2}}=\frac{5}{4}
Combine like terms in 16x^{2}+32x+16+x^{4}-4x^{2}+4.
\frac{12x^{2}+32x+20+x^{4}}{16}=\frac{5}{4}
Calculate 4 to the power of 2 and get 16.
\frac{3}{4}x^{2}+2x+\frac{5}{4}+\frac{1}{16}x^{4}=\frac{5}{4}
Divide each term of 12x^{2}+32x+20+x^{4} by 16 to get \frac{3}{4}x^{2}+2x+\frac{5}{4}+\frac{1}{16}x^{4}.
\frac{3}{4}x^{2}+2x+\frac{5}{4}+\frac{1}{16}x^{4}-\frac{5}{4}=0
Subtract \frac{5}{4} from both sides.
\frac{3}{4}x^{2}+2x+\frac{1}{16}x^{4}=0
Subtract \frac{5}{4} from \frac{5}{4} to get 0.
\frac{1}{16}t^{2}+\frac{3}{4}t+2=0
Substitute t for x^{2}.
t=\frac{-\frac{3}{4}±\sqrt{\left(\frac{3}{4}\right)^{2}-4\times \frac{1}{16}\times 2}}{\frac{1}{16}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{1}{16} for a, \frac{3}{4} for b, and 2 for c in the quadratic formula.
t=\frac{-\frac{3}{4}±\frac{1}{4}}{\frac{1}{8}}
Do the calculations.
t=-4 t=-8
Solve the equation t=\frac{-\frac{3}{4}±\frac{1}{4}}{\frac{1}{8}} when ± is plus and when ± is minus.
x=-2i x=2i x=-2\sqrt{2}i x=2\sqrt{2}i
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
x^{2}+2x+1+\left(\frac{x^{2}}{4}-\frac{1}{2}\right)^{2}=\frac{5}{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{2}+2x+1+\left(\frac{x^{2}}{4}-\frac{2}{4}\right)^{2}=\frac{5}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{1}{2} times \frac{2}{2}.
x^{2}+2x+1+\left(\frac{x^{2}-2}{4}\right)^{2}=\frac{5}{4}
Since \frac{x^{2}}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
x^{2}+2x+1+\frac{\left(x^{2}-2\right)^{2}}{4^{2}}=\frac{5}{4}
To raise \frac{x^{2}-2}{4} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}+2x+1\right)\times 4^{2}}{4^{2}}+\frac{\left(x^{2}-2\right)^{2}}{4^{2}}=\frac{5}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}+2x+1 times \frac{4^{2}}{4^{2}}.
\frac{\left(x^{2}+2x+1\right)\times 4^{2}+\left(x^{2}-2\right)^{2}}{4^{2}}=\frac{5}{4}
Since \frac{\left(x^{2}+2x+1\right)\times 4^{2}}{4^{2}} and \frac{\left(x^{2}-2\right)^{2}}{4^{2}} have the same denominator, add them by adding their numerators.
\frac{16x^{2}+32x+16+x^{4}-4x^{2}+4}{4^{2}}=\frac{5}{4}
Do the multiplications in \left(x^{2}+2x+1\right)\times 4^{2}+\left(x^{2}-2\right)^{2}.
\frac{12x^{2}+32x+20+x^{4}}{4^{2}}=\frac{5}{4}
Combine like terms in 16x^{2}+32x+16+x^{4}-4x^{2}+4.
\frac{12x^{2}+32x+20+x^{4}}{16}=\frac{5}{4}
Calculate 4 to the power of 2 and get 16.
\frac{3}{4}x^{2}+2x+\frac{5}{4}+\frac{1}{16}x^{4}=\frac{5}{4}
Divide each term of 12x^{2}+32x+20+x^{4} by 16 to get \frac{3}{4}x^{2}+2x+\frac{5}{4}+\frac{1}{16}x^{4}.
\frac{3}{4}x^{2}+2x+\frac{5}{4}+\frac{1}{16}x^{4}-\frac{5}{4}=0
Subtract \frac{5}{4} from both sides.
\frac{3}{4}x^{2}+2x+\frac{1}{16}x^{4}=0
Subtract \frac{5}{4} from \frac{5}{4} to get 0.
\frac{1}{16}t^{2}+\frac{3}{4}t+2=0
Substitute t for x^{2}.
t=\frac{-\frac{3}{4}±\sqrt{\left(\frac{3}{4}\right)^{2}-4\times \frac{1}{16}\times 2}}{\frac{1}{16}\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{1}{16} for a, \frac{3}{4} for b, and 2 for c in the quadratic formula.
t=\frac{-\frac{3}{4}±\frac{1}{4}}{\frac{1}{8}}
Do the calculations.
t=-4 t=-8
Solve the equation t=\frac{-\frac{3}{4}±\frac{1}{4}}{\frac{1}{8}} when ± is plus and when ± is minus.
x\in \emptyset
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.