Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{1}{9}=\frac{1}{3}
Consider \left(x+\frac{1}{3}\right)\left(x-\frac{1}{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{3}.
x^{2}=\frac{1}{3}+\frac{1}{9}
Add \frac{1}{9} to both sides.
x^{2}=\frac{4}{9}
Add \frac{1}{3} and \frac{1}{9} to get \frac{4}{9}.
x=\frac{2}{3} x=-\frac{2}{3}
Take the square root of both sides of the equation.
x^{2}-\frac{1}{9}=\frac{1}{3}
Consider \left(x+\frac{1}{3}\right)\left(x-\frac{1}{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{3}.
x^{2}-\frac{1}{9}-\frac{1}{3}=0
Subtract \frac{1}{3} from both sides.
x^{2}-\frac{4}{9}=0
Subtract \frac{1}{3} from -\frac{1}{9} to get -\frac{4}{9}.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{4}{9}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{4}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{4}{9}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{16}{9}}}{2}
Multiply -4 times -\frac{4}{9}.
x=\frac{0±\frac{4}{3}}{2}
Take the square root of \frac{16}{9}.
x=\frac{2}{3}
Now solve the equation x=\frac{0±\frac{4}{3}}{2} when ± is plus.
x=-\frac{2}{3}
Now solve the equation x=\frac{0±\frac{4}{3}}{2} when ± is minus.
x=\frac{2}{3} x=-\frac{2}{3}
The equation is now solved.