( x + 0,5 ) ^ { 2 } = ( x - 0,7 ) ^ { 2 }
Solve for x
x=0,1
Graph
Share
Copied to clipboard
x^{2}+x+0,25=\left(x-0,7\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+0,5\right)^{2}.
x^{2}+x+0,25=x^{2}-1,4x+0,49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-0,7\right)^{2}.
x^{2}+x+0,25-x^{2}=-1,4x+0,49
Subtract x^{2} from both sides.
x+0,25=-1,4x+0,49
Combine x^{2} and -x^{2} to get 0.
x+0,25+1,4x=0,49
Add 1,4x to both sides.
2,4x+0,25=0,49
Combine x and 1,4x to get 2,4x.
2,4x=0,49-0,25
Subtract 0,25 from both sides.
2,4x=0,24
Subtract 0,25 from 0,49 to get 0,24.
x=\frac{0,24}{2,4}
Divide both sides by 2,4.
x=\frac{24}{240}
Expand \frac{0,24}{2,4} by multiplying both numerator and the denominator by 100.
x=\frac{1}{10}
Reduce the fraction \frac{24}{240} to lowest terms by extracting and canceling out 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}