Skip to main content
Solve for m (complex solution)
Tick mark Image
Solve for m
Tick mark Image
Solve for L
Tick mark Image
Graph

Similar Problems from Web Search

Share

4L^{2}\left(x+\frac{m}{2L}\right)^{2}=-4Ln+m^{2}
Multiply both sides of the equation by 4L^{2}, the least common multiple of L,4L^{2}.
4L^{2}\left(\frac{x\times 2L}{2L}+\frac{m}{2L}\right)^{2}=-4Ln+m^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2L}{2L}.
4L^{2}\times \left(\frac{x\times 2L+m}{2L}\right)^{2}=-4Ln+m^{2}
Since \frac{x\times 2L}{2L} and \frac{m}{2L} have the same denominator, add them by adding their numerators.
4L^{2}\times \frac{\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}}=-4Ln+m^{2}
To raise \frac{x\times 2L+m}{2L} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}}L^{2}=-4Ln+m^{2}
Express 4\times \frac{\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}} as a single fraction.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{\left(2L\right)^{2}}L^{2}=-4Ln+m^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x\times 2L+m\right)^{2}.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{2^{2}L^{2}}L^{2}=-4Ln+m^{2}
Expand \left(2L\right)^{2}.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{4L^{2}}L^{2}=-4Ln+m^{2}
Calculate 2 to the power of 2 and get 4.
\frac{4L^{2}x^{2}+4Lmx+m^{2}}{L^{2}}L^{2}=-4Ln+m^{2}
Cancel out 4 in both numerator and denominator.
\frac{\left(4L^{2}x^{2}+4Lmx+m^{2}\right)L^{2}}{L^{2}}=-4Ln+m^{2}
Express \frac{4L^{2}x^{2}+4Lmx+m^{2}}{L^{2}}L^{2} as a single fraction.
4L^{2}x^{2}+4Lmx+m^{2}=-4Ln+m^{2}
Cancel out L^{2} in both numerator and denominator.
4L^{2}x^{2}+4Lmx+m^{2}-m^{2}=-4Ln
Subtract m^{2} from both sides.
4L^{2}x^{2}+4Lmx=-4Ln
Combine m^{2} and -m^{2} to get 0.
4Lmx=-4Ln-4L^{2}x^{2}
Subtract 4L^{2}x^{2} from both sides.
4Lxm=-4L^{2}x^{2}-4Ln
The equation is in standard form.
\frac{4Lxm}{4Lx}=-\frac{4L\left(Lx^{2}+n\right)}{4Lx}
Divide both sides by 4Lx.
m=-\frac{4L\left(Lx^{2}+n\right)}{4Lx}
Dividing by 4Lx undoes the multiplication by 4Lx.
m=-Lx-\frac{n}{x}
Divide -4L\left(n+Lx^{2}\right) by 4Lx.
4L^{2}\left(x+\frac{m}{2L}\right)^{2}=-4Ln+m^{2}
Multiply both sides of the equation by 4L^{2}, the least common multiple of L,4L^{2}.
4L^{2}\left(\frac{x\times 2L}{2L}+\frac{m}{2L}\right)^{2}=-4Ln+m^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2L}{2L}.
4L^{2}\times \left(\frac{x\times 2L+m}{2L}\right)^{2}=-4Ln+m^{2}
Since \frac{x\times 2L}{2L} and \frac{m}{2L} have the same denominator, add them by adding their numerators.
4L^{2}\times \frac{\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}}=-4Ln+m^{2}
To raise \frac{x\times 2L+m}{2L} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}}L^{2}=-4Ln+m^{2}
Express 4\times \frac{\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}} as a single fraction.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{\left(2L\right)^{2}}L^{2}=-4Ln+m^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x\times 2L+m\right)^{2}.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{2^{2}L^{2}}L^{2}=-4Ln+m^{2}
Expand \left(2L\right)^{2}.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{4L^{2}}L^{2}=-4Ln+m^{2}
Calculate 2 to the power of 2 and get 4.
\frac{4L^{2}x^{2}+4Lmx+m^{2}}{L^{2}}L^{2}=-4Ln+m^{2}
Cancel out 4 in both numerator and denominator.
\frac{\left(4L^{2}x^{2}+4Lmx+m^{2}\right)L^{2}}{L^{2}}=-4Ln+m^{2}
Express \frac{4L^{2}x^{2}+4Lmx+m^{2}}{L^{2}}L^{2} as a single fraction.
4L^{2}x^{2}+4Lmx+m^{2}=-4Ln+m^{2}
Cancel out L^{2} in both numerator and denominator.
4L^{2}x^{2}+4Lmx+m^{2}-m^{2}=-4Ln
Subtract m^{2} from both sides.
4L^{2}x^{2}+4Lmx=-4Ln
Combine m^{2} and -m^{2} to get 0.
4Lmx=-4Ln-4L^{2}x^{2}
Subtract 4L^{2}x^{2} from both sides.
4Lxm=-4L^{2}x^{2}-4Ln
The equation is in standard form.
\frac{4Lxm}{4Lx}=-\frac{4L\left(Lx^{2}+n\right)}{4Lx}
Divide both sides by 4Lx.
m=-\frac{4L\left(Lx^{2}+n\right)}{4Lx}
Dividing by 4Lx undoes the multiplication by 4Lx.
m=-Lx-\frac{n}{x}
Divide -4L\left(n+Lx^{2}\right) by 4Lx.