Solve for m (complex solution)
\left\{\begin{matrix}m=-Lx-\frac{n}{x}\text{, }&x\neq 0\text{ and }L\neq 0\\m\in \mathrm{C}\text{, }&n=0\text{ and }x=0\text{ and }L\neq 0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=-Lx-\frac{n}{x}\text{, }&x\neq 0\text{ and }L\neq 0\\m\in \mathrm{R}\text{, }&n=0\text{ and }x=0\text{ and }L\neq 0\end{matrix}\right.
Solve for L
\left\{\begin{matrix}L=-\frac{mx+n}{x^{2}}\text{, }&\left(n\neq 0\text{ or }m\neq 0\right)\text{ and }\left(m=0\text{ or }x\neq -\frac{n}{m}\right)\text{ and }x\neq 0\text{ and }n\neq -mx\\L\neq 0\text{, }&n=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
4L^{2}\left(x+\frac{m}{2L}\right)^{2}=-4Ln+m^{2}
Multiply both sides of the equation by 4L^{2}, the least common multiple of L,4L^{2}.
4L^{2}\left(\frac{x\times 2L}{2L}+\frac{m}{2L}\right)^{2}=-4Ln+m^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2L}{2L}.
4L^{2}\times \left(\frac{x\times 2L+m}{2L}\right)^{2}=-4Ln+m^{2}
Since \frac{x\times 2L}{2L} and \frac{m}{2L} have the same denominator, add them by adding their numerators.
4L^{2}\times \frac{\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}}=-4Ln+m^{2}
To raise \frac{x\times 2L+m}{2L} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}}L^{2}=-4Ln+m^{2}
Express 4\times \frac{\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}} as a single fraction.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{\left(2L\right)^{2}}L^{2}=-4Ln+m^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x\times 2L+m\right)^{2}.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{2^{2}L^{2}}L^{2}=-4Ln+m^{2}
Expand \left(2L\right)^{2}.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{4L^{2}}L^{2}=-4Ln+m^{2}
Calculate 2 to the power of 2 and get 4.
\frac{4L^{2}x^{2}+4Lmx+m^{2}}{L^{2}}L^{2}=-4Ln+m^{2}
Cancel out 4 in both numerator and denominator.
\frac{\left(4L^{2}x^{2}+4Lmx+m^{2}\right)L^{2}}{L^{2}}=-4Ln+m^{2}
Express \frac{4L^{2}x^{2}+4Lmx+m^{2}}{L^{2}}L^{2} as a single fraction.
4L^{2}x^{2}+4Lmx+m^{2}=-4Ln+m^{2}
Cancel out L^{2} in both numerator and denominator.
4L^{2}x^{2}+4Lmx+m^{2}-m^{2}=-4Ln
Subtract m^{2} from both sides.
4L^{2}x^{2}+4Lmx=-4Ln
Combine m^{2} and -m^{2} to get 0.
4Lmx=-4Ln-4L^{2}x^{2}
Subtract 4L^{2}x^{2} from both sides.
4Lxm=-4L^{2}x^{2}-4Ln
The equation is in standard form.
\frac{4Lxm}{4Lx}=-\frac{4L\left(Lx^{2}+n\right)}{4Lx}
Divide both sides by 4Lx.
m=-\frac{4L\left(Lx^{2}+n\right)}{4Lx}
Dividing by 4Lx undoes the multiplication by 4Lx.
m=-Lx-\frac{n}{x}
Divide -4L\left(n+Lx^{2}\right) by 4Lx.
4L^{2}\left(x+\frac{m}{2L}\right)^{2}=-4Ln+m^{2}
Multiply both sides of the equation by 4L^{2}, the least common multiple of L,4L^{2}.
4L^{2}\left(\frac{x\times 2L}{2L}+\frac{m}{2L}\right)^{2}=-4Ln+m^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2L}{2L}.
4L^{2}\times \left(\frac{x\times 2L+m}{2L}\right)^{2}=-4Ln+m^{2}
Since \frac{x\times 2L}{2L} and \frac{m}{2L} have the same denominator, add them by adding their numerators.
4L^{2}\times \frac{\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}}=-4Ln+m^{2}
To raise \frac{x\times 2L+m}{2L} to a power, raise both numerator and denominator to the power and then divide.
\frac{4\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}}L^{2}=-4Ln+m^{2}
Express 4\times \frac{\left(x\times 2L+m\right)^{2}}{\left(2L\right)^{2}} as a single fraction.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{\left(2L\right)^{2}}L^{2}=-4Ln+m^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x\times 2L+m\right)^{2}.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{2^{2}L^{2}}L^{2}=-4Ln+m^{2}
Expand \left(2L\right)^{2}.
\frac{4\left(4x^{2}L^{2}+4xLm+m^{2}\right)}{4L^{2}}L^{2}=-4Ln+m^{2}
Calculate 2 to the power of 2 and get 4.
\frac{4L^{2}x^{2}+4Lmx+m^{2}}{L^{2}}L^{2}=-4Ln+m^{2}
Cancel out 4 in both numerator and denominator.
\frac{\left(4L^{2}x^{2}+4Lmx+m^{2}\right)L^{2}}{L^{2}}=-4Ln+m^{2}
Express \frac{4L^{2}x^{2}+4Lmx+m^{2}}{L^{2}}L^{2} as a single fraction.
4L^{2}x^{2}+4Lmx+m^{2}=-4Ln+m^{2}
Cancel out L^{2} in both numerator and denominator.
4L^{2}x^{2}+4Lmx+m^{2}-m^{2}=-4Ln
Subtract m^{2} from both sides.
4L^{2}x^{2}+4Lmx=-4Ln
Combine m^{2} and -m^{2} to get 0.
4Lmx=-4Ln-4L^{2}x^{2}
Subtract 4L^{2}x^{2} from both sides.
4Lxm=-4L^{2}x^{2}-4Ln
The equation is in standard form.
\frac{4Lxm}{4Lx}=-\frac{4L\left(Lx^{2}+n\right)}{4Lx}
Divide both sides by 4Lx.
m=-\frac{4L\left(Lx^{2}+n\right)}{4Lx}
Dividing by 4Lx undoes the multiplication by 4Lx.
m=-Lx-\frac{n}{x}
Divide -4L\left(n+Lx^{2}\right) by 4Lx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}