Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x\left(x-6\right)}{x-6}+\frac{9}{x-6}}{\frac{3x^{2}-18x+27}{x^{2}-36}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-6}{x-6}.
\frac{\frac{x\left(x-6\right)+9}{x-6}}{\frac{3x^{2}-18x+27}{x^{2}-36}}
Since \frac{x\left(x-6\right)}{x-6} and \frac{9}{x-6} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-6x+9}{x-6}}{\frac{3x^{2}-18x+27}{x^{2}-36}}
Do the multiplications in x\left(x-6\right)+9.
\frac{\left(x^{2}-6x+9\right)\left(x^{2}-36\right)}{\left(x-6\right)\left(3x^{2}-18x+27\right)}
Divide \frac{x^{2}-6x+9}{x-6} by \frac{3x^{2}-18x+27}{x^{2}-36} by multiplying \frac{x^{2}-6x+9}{x-6} by the reciprocal of \frac{3x^{2}-18x+27}{x^{2}-36}.
\frac{\left(x-6\right)\left(x+6\right)\left(x-3\right)^{2}}{3\left(x-6\right)\left(x-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{x+6}{3}
Cancel out \left(x-6\right)\left(x-3\right)^{2} in both numerator and denominator.
\frac{\frac{x\left(x-6\right)}{x-6}+\frac{9}{x-6}}{\frac{3x^{2}-18x+27}{x^{2}-36}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-6}{x-6}.
\frac{\frac{x\left(x-6\right)+9}{x-6}}{\frac{3x^{2}-18x+27}{x^{2}-36}}
Since \frac{x\left(x-6\right)}{x-6} and \frac{9}{x-6} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-6x+9}{x-6}}{\frac{3x^{2}-18x+27}{x^{2}-36}}
Do the multiplications in x\left(x-6\right)+9.
\frac{\left(x^{2}-6x+9\right)\left(x^{2}-36\right)}{\left(x-6\right)\left(3x^{2}-18x+27\right)}
Divide \frac{x^{2}-6x+9}{x-6} by \frac{3x^{2}-18x+27}{x^{2}-36} by multiplying \frac{x^{2}-6x+9}{x-6} by the reciprocal of \frac{3x^{2}-18x+27}{x^{2}-36}.
\frac{\left(x-6\right)\left(x+6\right)\left(x-3\right)^{2}}{3\left(x-6\right)\left(x-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{x+6}{3}
Cancel out \left(x-6\right)\left(x-3\right)^{2} in both numerator and denominator.