Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{14}{3}x+\frac{49}{9}+\left(\frac{14}{3}\sqrt{2}\right)^{2}=\left(2\sqrt{2}x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{7}{3}\right)^{2}.
x^{2}+\frac{14}{3}x+\frac{49}{9}+\left(\frac{14}{3}\right)^{2}\left(\sqrt{2}\right)^{2}=\left(2\sqrt{2}x\right)^{2}
Expand \left(\frac{14}{3}\sqrt{2}\right)^{2}.
x^{2}+\frac{14}{3}x+\frac{49}{9}+\frac{196}{9}\left(\sqrt{2}\right)^{2}=\left(2\sqrt{2}x\right)^{2}
Calculate \frac{14}{3} to the power of 2 and get \frac{196}{9}.
x^{2}+\frac{14}{3}x+\frac{49}{9}+\frac{196}{9}\times 2=\left(2\sqrt{2}x\right)^{2}
The square of \sqrt{2} is 2.
x^{2}+\frac{14}{3}x+\frac{49}{9}+\frac{392}{9}=\left(2\sqrt{2}x\right)^{2}
Multiply \frac{196}{9} and 2 to get \frac{392}{9}.
x^{2}+\frac{14}{3}x+49=\left(2\sqrt{2}x\right)^{2}
Add \frac{49}{9} and \frac{392}{9} to get 49.
x^{2}+\frac{14}{3}x+49=2^{2}\left(\sqrt{2}\right)^{2}x^{2}
Expand \left(2\sqrt{2}x\right)^{2}.
x^{2}+\frac{14}{3}x+49=4\left(\sqrt{2}\right)^{2}x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+\frac{14}{3}x+49=4\times 2x^{2}
The square of \sqrt{2} is 2.
x^{2}+\frac{14}{3}x+49=8x^{2}
Multiply 4 and 2 to get 8.
x^{2}+\frac{14}{3}x+49-8x^{2}=0
Subtract 8x^{2} from both sides.
-7x^{2}+\frac{14}{3}x+49=0
Combine x^{2} and -8x^{2} to get -7x^{2}.
x=\frac{-\frac{14}{3}±\sqrt{\left(\frac{14}{3}\right)^{2}-4\left(-7\right)\times 49}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, \frac{14}{3} for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{14}{3}±\sqrt{\frac{196}{9}-4\left(-7\right)\times 49}}{2\left(-7\right)}
Square \frac{14}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{14}{3}±\sqrt{\frac{196}{9}+28\times 49}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-\frac{14}{3}±\sqrt{\frac{196}{9}+1372}}{2\left(-7\right)}
Multiply 28 times 49.
x=\frac{-\frac{14}{3}±\sqrt{\frac{12544}{9}}}{2\left(-7\right)}
Add \frac{196}{9} to 1372.
x=\frac{-\frac{14}{3}±\frac{112}{3}}{2\left(-7\right)}
Take the square root of \frac{12544}{9}.
x=\frac{-\frac{14}{3}±\frac{112}{3}}{-14}
Multiply 2 times -7.
x=\frac{\frac{98}{3}}{-14}
Now solve the equation x=\frac{-\frac{14}{3}±\frac{112}{3}}{-14} when ± is plus. Add -\frac{14}{3} to \frac{112}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{7}{3}
Divide \frac{98}{3} by -14.
x=-\frac{42}{-14}
Now solve the equation x=\frac{-\frac{14}{3}±\frac{112}{3}}{-14} when ± is minus. Subtract \frac{112}{3} from -\frac{14}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=3
Divide -42 by -14.
x=-\frac{7}{3} x=3
The equation is now solved.
x^{2}+\frac{14}{3}x+\frac{49}{9}+\left(\frac{14}{3}\sqrt{2}\right)^{2}=\left(2\sqrt{2}x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{7}{3}\right)^{2}.
x^{2}+\frac{14}{3}x+\frac{49}{9}+\left(\frac{14}{3}\right)^{2}\left(\sqrt{2}\right)^{2}=\left(2\sqrt{2}x\right)^{2}
Expand \left(\frac{14}{3}\sqrt{2}\right)^{2}.
x^{2}+\frac{14}{3}x+\frac{49}{9}+\frac{196}{9}\left(\sqrt{2}\right)^{2}=\left(2\sqrt{2}x\right)^{2}
Calculate \frac{14}{3} to the power of 2 and get \frac{196}{9}.
x^{2}+\frac{14}{3}x+\frac{49}{9}+\frac{196}{9}\times 2=\left(2\sqrt{2}x\right)^{2}
The square of \sqrt{2} is 2.
x^{2}+\frac{14}{3}x+\frac{49}{9}+\frac{392}{9}=\left(2\sqrt{2}x\right)^{2}
Multiply \frac{196}{9} and 2 to get \frac{392}{9}.
x^{2}+\frac{14}{3}x+49=\left(2\sqrt{2}x\right)^{2}
Add \frac{49}{9} and \frac{392}{9} to get 49.
x^{2}+\frac{14}{3}x+49=2^{2}\left(\sqrt{2}\right)^{2}x^{2}
Expand \left(2\sqrt{2}x\right)^{2}.
x^{2}+\frac{14}{3}x+49=4\left(\sqrt{2}\right)^{2}x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+\frac{14}{3}x+49=4\times 2x^{2}
The square of \sqrt{2} is 2.
x^{2}+\frac{14}{3}x+49=8x^{2}
Multiply 4 and 2 to get 8.
x^{2}+\frac{14}{3}x+49-8x^{2}=0
Subtract 8x^{2} from both sides.
-7x^{2}+\frac{14}{3}x+49=0
Combine x^{2} and -8x^{2} to get -7x^{2}.
-7x^{2}+\frac{14}{3}x=-49
Subtract 49 from both sides. Anything subtracted from zero gives its negation.
\frac{-7x^{2}+\frac{14}{3}x}{-7}=-\frac{49}{-7}
Divide both sides by -7.
x^{2}+\frac{\frac{14}{3}}{-7}x=-\frac{49}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{2}{3}x=-\frac{49}{-7}
Divide \frac{14}{3} by -7.
x^{2}-\frac{2}{3}x=7
Divide -49 by -7.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=7+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=7+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{64}{9}
Add 7 to \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{64}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{64}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{8}{3} x-\frac{1}{3}=-\frac{8}{3}
Simplify.
x=3 x=-\frac{7}{3}
Add \frac{1}{3} to both sides of the equation.