Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{xx}{x}+\frac{4}{x}\right)^{2}=3x^{2}+4
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\left(\frac{xx+4}{x}\right)^{2}=3x^{2}+4
Since \frac{xx}{x} and \frac{4}{x} have the same denominator, add them by adding their numerators.
\left(\frac{x^{2}+4}{x}\right)^{2}=3x^{2}+4
Do the multiplications in xx+4.
\frac{\left(x^{2}+4\right)^{2}}{x^{2}}=3x^{2}+4
To raise \frac{x^{2}+4}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}\right)^{2}+8x^{2}+16}{x^{2}}=3x^{2}+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+4\right)^{2}.
\frac{x^{4}+8x^{2}+16}{x^{2}}=3x^{2}+4
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{x^{4}+8x^{2}+16}{x^{2}}-3x^{2}=4
Subtract 3x^{2} from both sides.
\frac{x^{4}+8x^{2}+16}{x^{2}}+\frac{-3x^{2}x^{2}}{x^{2}}=4
To add or subtract expressions, expand them to make their denominators the same. Multiply -3x^{2} times \frac{x^{2}}{x^{2}}.
\frac{x^{4}+8x^{2}+16-3x^{2}x^{2}}{x^{2}}=4
Since \frac{x^{4}+8x^{2}+16}{x^{2}} and \frac{-3x^{2}x^{2}}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}+8x^{2}+16-3x^{4}}{x^{2}}=4
Do the multiplications in x^{4}+8x^{2}+16-3x^{2}x^{2}.
\frac{-2x^{4}+8x^{2}+16}{x^{2}}=4
Combine like terms in x^{4}+8x^{2}+16-3x^{4}.
\frac{-2x^{4}+8x^{2}+16}{x^{2}}-4=0
Subtract 4 from both sides.
\frac{-2x^{4}+8x^{2}+16}{x^{2}}-\frac{4x^{2}}{x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x^{2}}{x^{2}}.
\frac{-2x^{4}+8x^{2}+16-4x^{2}}{x^{2}}=0
Since \frac{-2x^{4}+8x^{2}+16}{x^{2}} and \frac{4x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{4}+4x^{2}+16}{x^{2}}=0
Combine like terms in -2x^{4}+8x^{2}+16-4x^{2}.
-2x^{4}+4x^{2}+16=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
-2t^{2}+4t+16=0
Substitute t for x^{2}.
t=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 16}}{-2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -2 for a, 4 for b, and 16 for c in the quadratic formula.
t=\frac{-4±12}{-4}
Do the calculations.
t=-2 t=4
Solve the equation t=\frac{-4±12}{-4} when ± is plus and when ± is minus.
x=-\sqrt{2}i x=\sqrt{2}i x=-2 x=2
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(\frac{xx}{x}+\frac{4}{x}\right)^{2}=3x^{2}+4
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\left(\frac{xx+4}{x}\right)^{2}=3x^{2}+4
Since \frac{xx}{x} and \frac{4}{x} have the same denominator, add them by adding their numerators.
\left(\frac{x^{2}+4}{x}\right)^{2}=3x^{2}+4
Do the multiplications in xx+4.
\frac{\left(x^{2}+4\right)^{2}}{x^{2}}=3x^{2}+4
To raise \frac{x^{2}+4}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}\right)^{2}+8x^{2}+16}{x^{2}}=3x^{2}+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+4\right)^{2}.
\frac{x^{4}+8x^{2}+16}{x^{2}}=3x^{2}+4
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{x^{4}+8x^{2}+16}{x^{2}}-3x^{2}=4
Subtract 3x^{2} from both sides.
\frac{x^{4}+8x^{2}+16}{x^{2}}+\frac{-3x^{2}x^{2}}{x^{2}}=4
To add or subtract expressions, expand them to make their denominators the same. Multiply -3x^{2} times \frac{x^{2}}{x^{2}}.
\frac{x^{4}+8x^{2}+16-3x^{2}x^{2}}{x^{2}}=4
Since \frac{x^{4}+8x^{2}+16}{x^{2}} and \frac{-3x^{2}x^{2}}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{x^{4}+8x^{2}+16-3x^{4}}{x^{2}}=4
Do the multiplications in x^{4}+8x^{2}+16-3x^{2}x^{2}.
\frac{-2x^{4}+8x^{2}+16}{x^{2}}=4
Combine like terms in x^{4}+8x^{2}+16-3x^{4}.
\frac{-2x^{4}+8x^{2}+16}{x^{2}}-4=0
Subtract 4 from both sides.
\frac{-2x^{4}+8x^{2}+16}{x^{2}}-\frac{4x^{2}}{x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x^{2}}{x^{2}}.
\frac{-2x^{4}+8x^{2}+16-4x^{2}}{x^{2}}=0
Since \frac{-2x^{4}+8x^{2}+16}{x^{2}} and \frac{4x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{4}+4x^{2}+16}{x^{2}}=0
Combine like terms in -2x^{4}+8x^{2}+16-4x^{2}.
-2x^{4}+4x^{2}+16=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
-2t^{2}+4t+16=0
Substitute t for x^{2}.
t=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 16}}{-2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -2 for a, 4 for b, and 16 for c in the quadratic formula.
t=\frac{-4±12}{-4}
Do the calculations.
t=-2 t=4
Solve the equation t=\frac{-4±12}{-4} when ± is plus and when ± is minus.
x=2 x=-2
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.