Evaluate
6x+\frac{6}{x}+\frac{2}{x^{3}}
Expand
6x+\frac{6}{x}+\frac{2}{x^{3}}
Graph
Share
Copied to clipboard
\left(\frac{xx}{x}+\frac{1}{x}\right)^{3}-x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\left(\frac{xx+1}{x}\right)^{3}-x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\left(\frac{x^{2}+1}{x}\right)^{3}-x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)
Do the multiplications in xx+1.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)
To raise \frac{x^{2}+1}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-x^{3}+\frac{1}{x^{3}}+3\left(\frac{xx}{x}+\frac{1}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-x^{3}+\frac{1}{x^{3}}+3\times \frac{xx+1}{x}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-x^{3}+\frac{1}{x^{3}}+3\times \frac{x^{2}+1}{x}
Do the multiplications in xx+1.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-x^{3}+\frac{1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Express 3\times \frac{x^{2}+1}{x} as a single fraction.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-\frac{x^{3}x^{3}}{x^{3}}+\frac{1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{3} times \frac{x^{3}}{x^{3}}.
\frac{\left(x^{2}+1\right)^{3}-x^{3}x^{3}}{x^{3}}+\frac{1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Since \frac{\left(x^{2}+1\right)^{3}}{x^{3}} and \frac{x^{3}x^{3}}{x^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}\times 1^{2}+1^{3}-x^{6}}{x^{3}}+\frac{1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Do the multiplications in \left(x^{2}+1\right)^{3}-x^{3}x^{3}.
\frac{3x^{4}+3x^{2}+1}{x^{3}}+\frac{1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Combine like terms in \left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}\times 1^{2}+1^{3}-x^{6}.
\frac{3x^{4}+3x^{2}+1+1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Since \frac{3x^{4}+3x^{2}+1}{x^{3}} and \frac{1}{x^{3}} have the same denominator, add them by adding their numerators.
\frac{3x^{4}+3x^{2}+2}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Combine like terms in 3x^{4}+3x^{2}+1+1.
\frac{3x^{4}+3x^{2}+2}{x^{3}}+\frac{3\left(x^{2}+1\right)x^{2}}{x^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{3} and x is x^{3}. Multiply \frac{3\left(x^{2}+1\right)}{x} times \frac{x^{2}}{x^{2}}.
\frac{3x^{4}+3x^{2}+2+3\left(x^{2}+1\right)x^{2}}{x^{3}}
Since \frac{3x^{4}+3x^{2}+2}{x^{3}} and \frac{3\left(x^{2}+1\right)x^{2}}{x^{3}} have the same denominator, add them by adding their numerators.
\frac{3x^{4}+3x^{2}+2+3x^{4}+3x^{2}}{x^{3}}
Do the multiplications in 3x^{4}+3x^{2}+2+3\left(x^{2}+1\right)x^{2}.
\frac{6x^{4}+6x^{2}+2}{x^{3}}
Combine like terms in 3x^{4}+3x^{2}+2+3x^{4}+3x^{2}.
\left(\frac{xx}{x}+\frac{1}{x}\right)^{3}-x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\left(\frac{xx+1}{x}\right)^{3}-x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\left(\frac{x^{2}+1}{x}\right)^{3}-x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)
Do the multiplications in xx+1.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)
To raise \frac{x^{2}+1}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-x^{3}+\frac{1}{x^{3}}+3\left(\frac{xx}{x}+\frac{1}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-x^{3}+\frac{1}{x^{3}}+3\times \frac{xx+1}{x}
Since \frac{xx}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-x^{3}+\frac{1}{x^{3}}+3\times \frac{x^{2}+1}{x}
Do the multiplications in xx+1.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-x^{3}+\frac{1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Express 3\times \frac{x^{2}+1}{x} as a single fraction.
\frac{\left(x^{2}+1\right)^{3}}{x^{3}}-\frac{x^{3}x^{3}}{x^{3}}+\frac{1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{3} times \frac{x^{3}}{x^{3}}.
\frac{\left(x^{2}+1\right)^{3}-x^{3}x^{3}}{x^{3}}+\frac{1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Since \frac{\left(x^{2}+1\right)^{3}}{x^{3}} and \frac{x^{3}x^{3}}{x^{3}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}\times 1^{2}+1^{3}-x^{6}}{x^{3}}+\frac{1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Do the multiplications in \left(x^{2}+1\right)^{3}-x^{3}x^{3}.
\frac{3x^{4}+3x^{2}+1}{x^{3}}+\frac{1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Combine like terms in \left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}\times 1^{2}+1^{3}-x^{6}.
\frac{3x^{4}+3x^{2}+1+1}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Since \frac{3x^{4}+3x^{2}+1}{x^{3}} and \frac{1}{x^{3}} have the same denominator, add them by adding their numerators.
\frac{3x^{4}+3x^{2}+2}{x^{3}}+\frac{3\left(x^{2}+1\right)}{x}
Combine like terms in 3x^{4}+3x^{2}+1+1.
\frac{3x^{4}+3x^{2}+2}{x^{3}}+\frac{3\left(x^{2}+1\right)x^{2}}{x^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{3} and x is x^{3}. Multiply \frac{3\left(x^{2}+1\right)}{x} times \frac{x^{2}}{x^{2}}.
\frac{3x^{4}+3x^{2}+2+3\left(x^{2}+1\right)x^{2}}{x^{3}}
Since \frac{3x^{4}+3x^{2}+2}{x^{3}} and \frac{3\left(x^{2}+1\right)x^{2}}{x^{3}} have the same denominator, add them by adding their numerators.
\frac{3x^{4}+3x^{2}+2+3x^{4}+3x^{2}}{x^{3}}
Do the multiplications in 3x^{4}+3x^{2}+2+3\left(x^{2}+1\right)x^{2}.
\frac{6x^{4}+6x^{2}+2}{x^{3}}
Combine like terms in 3x^{4}+3x^{2}+2+3x^{4}+3x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}